Role of Intact Hydrogen-Bond Networks in Multiproton-Coupled Electron Transfer
Journal Article
·
· Journal of the American Chemical Society
- Arizona State Univ., Tempe, AZ (United States); Arizona State University
- Arizona State Univ., Tempe, AZ (United States)
- Yale Univ., New Haven, CT (United States)
- Univ. Nacional de Río Cuarto, Córdoba (Argentina)
The essential role of a well-defined hydrogen-bond network in achieving chemically reversible multiproton translocations triggered by one-electron electrochemical oxidation/reduction is investigated by using pyridylbenzimidazole–phenol models. The two molecular architectures designed for these studies differ with respect to the position of the N atom on the pyridyl ring. In one of the structures, a hydrogen-bond network extends uninterrupted across the molecule from the phenol to the pyridyl group. Experimental and theoretical evidence indicates that an overall chemically reversible two-protoncoupled electron-transfer process (E2PT) takes place upon electrochemical oxidation of the phenol. This E2PT process yields the pyridinium cation and is observed regardless of the cyclic voltammogram scan rate. In contrast, when the hydrogen-bond network is disrupted, as seen in the isomer, at high scan rates (~1000 mV s–1) a chemically reversible process is observed with an E1/2 characteristic of a one-proton-coupled electron-transfer process (E1PT). At slow cyclic voltammetric scan rates (<1000 mV s–1) oxidation of the phenol results in an overall chemically irreversible two-proton-coupled electron-transfer process in which the second proton-transfer step yields the pyridinium cation detected by infrared spectroelectrochemistry. In this case, we postulate an initial intramolecular proton-coupled electron-transfer step yielding the E1PT product followed by a slow, likely intermolecular chemical step involving a second proton transfer to give the E2PT product. Insights into the electrochemical behavior of these systems are provided by theoretical calculations of the electrostatic potentials and electric fields at the site of the transferring protons for the forward and reverse processes. Furthermore, this work addresses a fundamental design principle for constructing molecular wires where protons are translocated over varied distances by a Grotthuss-type mechanism.
- Research Organization:
- Arizona State Univ., Tempe, AZ (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC); USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- FG02-03ER15393; SC0021186
- OSTI ID:
- 1831459
- Alternate ID(s):
- OSTI ID: 1832128
- Journal Information:
- Journal of the American Chemical Society, Journal Name: Journal of the American Chemical Society Journal Issue: 52 Vol. 142; ISSN 0002-7863
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Design and synthesis of benzimidazole phenol-porphyrin dyads for the study of bioinspired photoinduced proton-coupled electron transfer
Journal Article
·
Wed Jan 15 19:00:00 EST 2020
· Journal of Porphyrins and Phthalocyanines
·
OSTI ID:1800067