Kinematics of a Cable-Driven Robotic Platform for Large-Scale Additive Manufacturing
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Concrete additive manufacturing (AM) is a growing field of research. However, on-site, large-scale concrete additive manufacturing requires motion platforms that are difficult to implement with conventional rigid-link robotic systems. This article presents a new kinematic arrangement for a deployable cable-driven robot intended for on-site AM. The kinematics of this robot are examined to determine if they meet the requirements for this application, the wrench feasible workspace (WFW) is examined, and the physical implementation of a prototype is also presented. Data collected from the physical implementation of the proposed system are analyzed, and the results support its suitability for the intended application. The success of this system demonstrates that this kinematic arrangement is promising for future deployable AM systems.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1822074
- Journal Information:
- Journal of Mechanisms and Robotics, Journal Name: Journal of Mechanisms and Robotics Journal Issue: 2 Vol. 14; ISSN 1942-4302
- Publisher:
- American Society of Mechanical Engineers (ASME)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Cable-Driven Parallel Robot (CDPR) for Panelized Envelope Retrofits: Feasible Workspace Analysis
Investigation robot on cables - 15250