Novel 2D velocity estimation method for large transient events in plasmas
Journal Article
·
· Review of Scientific Instruments
- Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Dynamics of fast transient events are challenging to be analyzed with high time resolution. Such events can occur in fusion plasmas such as the filaments during edge-localized modes (ELMs). Here, we present a robust method—the spatial displacement estimation—for estimating the displacements of structures with fast dynamics from high spatial and time resolution imaging diagnostics [e.g., gas-puff imaging (GPI)] with sampling time temporal resolution. First, a background suppression method is shown, which suppresses the slowly time-evolving and spatially non-uniform background in the signal. In the second step, a two-dimensional polynomial trend subtraction method is presented to tackle the remaining polynomial order trend in the signal. After performing these pre-processing steps, the spatial displacement of the propagating structure is estimated from the two-dimensional spatial cross-correlation coefficient function calculated between consecutive frames. The method is tested for its robustness and accuracy by simulated Gaussian events and spatially displaced random noise. An example application of the method is presented on propagating ELM filaments measured by the GPI system on the National Spherical Torus Experiment spherical tokamak.
- Research Organization:
- Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC02-09CH11466
- OSTI ID:
- 1818872
- Journal Information:
- Review of Scientific Instruments, Journal Name: Review of Scientific Instruments Journal Issue: 8 Vol. 92; ISSN 0034-6748
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dynamics of filaments during the edge-localized mode crash on NSTX
Novel angular velocity estimation technique for plasma filaments
Dataset
·
Tue Jan 19 23:00:00 EST 2021
·
OSTI ID:1814943
Novel angular velocity estimation technique for plasma filaments
Journal Article
·
Tue Jan 10 19:00:00 EST 2023
· Review of Scientific Instruments
·
OSTI ID:1914077