Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Development of a Unified Taxonomy for HVAC System Faults

Journal Article · · Energies
DOI:https://doi.org/10.3390/en14175581· OSTI ID:1818795

Detecting and diagnosing HVAC faults is critical for maintaining building operation performance, reducing energy waste, and ensuring indoor comfort. An increasing deployment of commercial fault detection and diagnostics (FDD) software tools in commercial buildings in the past decade has significantly increased buildings’ operational reliability and reduced energy consumption. A massive amount of data has been generated by the FDD software tools. However, efficiently utilizing FDD data for ‘big data’ analytics, algorithm improvement, and other data-driven applications is challenging because the format and naming conventions of those data are very customized, unstructured, and hard to interpret. This paper presents the development of a unified taxonomy for HVAC faults. A taxonomy is an orderly classification of HVAC faults according to their characteristics and causal relations. The taxonomy includes fault categorization, physical hierarchy, fault library, relation model, and naming/tagging scheme. The taxonomy employs both a physical hierarchy of HVAC equipment and a cause-effect relationship model to reveal the root causes of faults in HVAC systems. A structured and standardized vocabulary library is developed to increase data representability and interpretability. The developed fault taxonomy can be used for HVAC system ‘big data’ analytics such as HVAC system fault prevalence analysis or the development of an HVAC FDD software standard. A common type of HVAC equipment-packaged rooftop unit (RTU) is used as an example to demonstrate the application of the developed fault taxonomy. Two RTU FDD software tools are used to show that after mapping FDD data according to the taxonomy, the meta-analysis of the multiple FDD reports is possible and efficient.

Research Organization:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Building Technologies Office
Grant/Contract Number:
AC02-05CH11231
OSTI ID:
1818795
Alternate ID(s):
OSTI ID: 1823603
Journal Information:
Energies, Journal Name: Energies Journal Issue: 17 Vol. 14; ISSN 1996-1073; ISSN ENERGA
Publisher:
MDPI AGCopyright Statement
Country of Publication:
Switzerland
Language:
English

Similar Records

What's in a Name? Developing a Standardized Taxonomy for HVAC System Faults
Conference · Thu Oct 29 00:00:00 EDT 2020 · OSTI ID:1695767

Bringing Automated Fault Detection and Diagnostics Tools for HVAC&R Into the Mainstream
Journal Article · Tue Aug 18 20:00:00 EDT 2020 · Journal of Engineering for Sustainable Buildings and Cities · OSTI ID:1846415