Automatic Qubit Characterization and Gate Optimization with QubiC
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Univ. of California, Berkeley, CA (United States)
As the size and complexity of a quantum computer increases, quantum bit (qubit) characterization and gate optimization become complex and time-consuming tasks. Current calibration techniques require complicated and verbose measurements to tune up qubits and gates, which cannot easily expand to the large-scale quantum systems. We develop a concise and automatic calibration protocol to characterize qubits and optimize gates using QubiC, which is an open source FPGA (field-programmable gate array) based control and measurement system for superconducting quantum information processors. We propose multi-dimensional loss-based optimization of single-qubit gates and full XY-plane measurement method for the two-qubit CNOT gate calibration. We demonstrate the QubiC automatic calibration protocols are capable of delivering high-fidelity gates on the state-of-the-art transmon-type processor operating at the Advanced Quantum Testbed at Lawrence Berkeley National Laboratory. Finally, the single-qubit and two-qubit Clifford gate infidelities measured by randomized benchmarking are of 4.9(1.1) × 10-4 and 1.4(3) × 10-2, respectively.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), High Energy Physics (HEP)
- Grant/Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1815405
- Journal Information:
- ACM Transactions on Quantum Computing, Journal Name: ACM Transactions on Quantum Computing Journal Issue: 1 Vol. 4; ISSN 2643-6809
- Publisher:
- Association for Computing MachineryCopyright Statement
- Country of Publication:
- United States
- Language:
- English