Numerical solution of large scale Hartree–Fock–Bogoliubov equations
Journal Article
·
· Mathematical Modelling and Numerical Analysis
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
- Univ. of California, Berkeley, CA (United States)
The Hartree–Fock–Bogoliubov (HFB) theory is the starting point for treating superconducting systems. However, the computational cost for solving large scale HFB equations can be much larger than that of the Hartree–Fock equations, particularly when the Hamiltonian matrix is sparse, and the number of electrons N is relatively small compared to the matrix size Nb. We first provide a concise and relatively self-contained review of the HFB theory for general finite sized quantum systems, with special focus on the treatment of spin symmetries from a linear algebra perspective. We then demonstrate that the pole expansion and selected inversion (PEXSI) method can be particularly well suited for solving large scale HFB equations. For a Hubbard-type Hamiltonian, the cost of PEXSI is at most $$\mathcal{O}$$(Nb2) for both gapped and gapless systems, which can be significantly faster than the standard cubic scaling diagonalization methods. We show that PEXSI can solve a two-dimensional Hubbard-Hofstadter model with Nb up to 2.88 × 106, and the wall clock time is less than 100 s using 17 280 CPU cores. Finally, this enables the simulation of physical systems under experimentally realizable magnetic fields, which cannot be otherwise simulated with smaller systems.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- US Air Force Office of Scientific Research (AFOSR); USDOE Office of Science (SC)
- Grant/Contract Number:
- AC02-05CH11231; SC0017867
- OSTI ID:
- 1813387
- Journal Information:
- Mathematical Modelling and Numerical Analysis, Journal Name: Mathematical Modelling and Numerical Analysis Journal Issue: 3 Vol. 55; ISSN 0764-583X
- Publisher:
- EDP SciencesCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Application of the gradient method to Hartree-Fock-Bogoliubov theory
Three-dimensional Skyrme Hartree-Fock-Bogoliubov solver in coordinate-space representation
Hartree-Fock-Bogoliubov solution of the pairing Hamiltonian in finite nuclei
Journal Article
·
Fri Jul 15 00:00:00 EDT 2011
· Physical Review. C, Nuclear Physics
·
OSTI ID:21596558
Three-dimensional Skyrme Hartree-Fock-Bogoliubov solver in coordinate-space representation
Journal Article
·
Sun Mar 20 20:00:00 EDT 2022
· Computer Physics Communications
·
OSTI ID:1871664
Hartree-Fock-Bogoliubov solution of the pairing Hamiltonian in finite nuclei
Journal Article
·
Sat Dec 31 23:00:00 EST 2011
· World Scientific Review
·
OSTI ID:1043330