Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Verification of Triso Fuel Burnup Using Machine Learning Algorithms

Technical Report ·
DOI:https://doi.org/10.2172/1813329· OSTI ID:1813329
Pebble Bed Reactors are fueled with fuel pebbles that are circulated multiple times through the reactor vessel before discharge. During the normal operation of a PBR, ejected pebbles are returned to the reactor or discharged depending on the fuel burnup and physical condition of the pebbles. The burnup measurement is usually based on detected radiation signatures of fission products accumulated in the pebble fuel over burnup. Previous research has shown that height of photopeaks of fission products, such as 134Cs, 137Cs, 154Eu, etc., can be used independently or in combination to infer or predict the level of burnup in the fuel. However, it remains challenging to measure such complex sources due to self-shielding effects, strong radiation background and intervening materials. Another operational challenge is the required high throughput of burnup measurement, which necessitates limited measurement time and thus impacts quality of measured gamma-ray spectra. Hence, advanced spectral analysis methods are needed to analyze the noisy gamma spectra and predict the burnup values. We propose to use machine learning (ML) method to interpret gamma-ray spectra and predict the burnup values of the pebbles. ML has achieved widespread success and adoption across a few domains that require pattern recognition and analysis in varied data types. In this work, we apply three proven ML approaches - multilayer perceptrons, convolutional neural networks, and transformers - to the task of predicting fuel burnup from measured gamma spectra, and compile a dataset of simulated spectra for training and validation of the ML models. In this paper, we will discuss the network architecture of these three ML approaches and compare the performance of the simplest of these (MLP) to a standard linear regression.
Research Organization:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA), Office of Nonproliferation and Verification Research and Development; USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
SC0012704
OSTI ID:
1813329
Report Number(s):
BNL-221947-2021-INRE
Country of Publication:
United States
Language:
English

Similar Records

VERIFICATION OF TRISO FUEL BURNUP USING MACHINE LEARNING ALGORITHMS
Conference · Mon Aug 23 00:00:00 EDT 2021 · OSTI ID:1817187

Use Machine Learning to Improve Burnup Measurement in Pebble Bed Reactors
Technical Report · Thu Sep 09 00:00:00 EDT 2021 · OSTI ID:1822321

A Better Method to Calculate Fuel Burnup in Pebble Bed Reactors Using Machine Learning
Journal Article · Wed May 10 20:00:00 EDT 2023 · Nuclear Technology · OSTI ID:1971837