skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microstructural Changes and Chemical Analysis of Fission Products in Irradiated Uranium-7 wt.% Molybdenum Metallic Fuel Using Atom Probe Tomography

Journal Article · · Applied Sciences
DOI:https://doi.org/10.3390/app11156905· OSTI ID:1810433

Understanding the microstructural and phase changes occurring during irradiation and their impact on metallic fuel behavior is integral to research and development of nuclear fuel programs. This paper reports systematic analysis of as-fabricated and irradiated low-enriched U-Mo (uranium-molybdenum metal alloy) fuel using atom probe tomography (APT). This study is carried out on U-7 wt.% Mo fuel particles coated with a ZrN layer contained within an Al matrix during irradiation. The dispersion fuel plates from which the fuel samples were extracted are irradiated at Belgian Nuclear Research Centre (SCK CEN) with burn-up of 52% and 66% in the framework of the SELENIUM (Surface Engineering of Low ENrIched Uranium-Molybdenum) project. The APT studies on U-Mo particles from as-fabricated fuel plates enriched to 19.8% revealed predominantly γ-phase U-Mo, along with a network of the cell boundary decorated with α-U, γ’-U2Mo, and UC precipitates along the grain boundaries. The corresponding APT characterization of irradiated fuel samples showed formation of fission gas bubbles enriched with solid fission products. The intermediate burnup sample showed a uniform distribution of the typical bubble superlattice with a radius of 2 nm arranged in a regular lattice, while the high burnup sample showed a non-uniform distribution of bubbles in grain-refined regions. There was no evidence of remnant α-U, γ’-U2Mo, and UC phases in the irradiated U-7 wt.% Mo samples.

Sponsoring Organization:
USDOE
Grant/Contract Number:
AC07-05ID14517
OSTI ID:
1810433
Journal Information:
Applied Sciences, Journal Name: Applied Sciences Vol. 11 Journal Issue: 15; ISSN 2076-3417
Publisher:
MDPI AGCopyright Statement
Country of Publication:
Switzerland
Language:
English

Similar Records

First-principles study of inert gas incorporation and migration in zirconium nitride
Journal Article · Wed Jun 15 00:00:00 EDT 2016 · Transactions of the American Nuclear Society · OSTI ID:1810433

TEM Characterization of U-Mo Irradiated with High-Energy Xe Ions
Journal Article · Wed Jun 15 00:00:00 EDT 2016 · Transactions of the American Nuclear Society · OSTI ID:1810433

Delayed onset of discontinuous precipitation-based phase transformation in U10Mo alloys doped with Silicon
Journal Article · Thu Jul 14 00:00:00 EDT 2022 · Journal of Alloys and Compounds · OSTI ID:1810433

Related Subjects