A Comparative Study of Direct and Indirect Additive Manufacturing Approaches for the Production of a Wind Energy Component
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- Vestas Wind Energy Systems, Aarhus (Denmark)
- National Renewable Energy Lab. (NREL), Golden, CO (United States)
Additive manufacturing (AM) was developed in the 1980s to create three-dimensional prototypes through layer-wise approaches to fabrication. Since then, these approaches have seen improvements in both materials and processing technologies. To date, there are now 7 types of additive manufacturing processes and hundreds of materials, which can be directly printed – going directly from digital design to fabricated components. In this project, Oak Ridge National Laboratory (ORNL), Vestas Wind Systems, and The National Renewable Energy Laboratory (NREL) collaborated to evaluate the effectiveness of state-of-the-art large-scale AM processes in the production of a structural component for use in a wind turbine nacelle, through both direct and indirect manufacturing approaches. Here, experienced AM design engineers detail techniques for AM design, including topology optimization (TO), support minimization, reverse engineering, and techniques for mitigating poor interlaminar performance. Fabrication of the components is presented, including printing parameters and postprocessing, and followed with full-scale component testing by a 3rd party testing laboratory. To evaluate the potential of the developed approaches, a complete techno-economic analysis is provided which evaluates the cost of these techniques given current and near to long-term projections of AM system capabilities.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1809969
- Report Number(s):
- ORNL/SPR-2021/1905
- Country of Publication:
- United States
- Language:
- English
Similar Records
Big Area Additive Manufacturing Application in Wind Turbine Molds
A Road Map for the Advanced Manufacturing of Ferritic-Martensitic Steels
BAAM Additive Manufacturing of Magnetically Levitated Wind Turbine
Conference
·
Wed Aug 09 00:00:00 EDT 2017
·
OSTI ID:1548257
A Road Map for the Advanced Manufacturing of Ferritic-Martensitic Steels
Journal Article
·
Sun May 12 20:00:00 EDT 2019
· Fusion Science and Technology
·
OSTI ID:1524882
BAAM Additive Manufacturing of Magnetically Levitated Wind Turbine
Technical Report
·
Tue May 01 00:00:00 EDT 2018
·
OSTI ID:1439341