Design of Graphene/Ionic Liquid Composites for Carbon Capture
- Univ. of California, Riverside, CA (United States)
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Pore size is a crucial factor impacting gas separation in porous separation materials, but how to control the pore size to optimize the separation performance remains a challenge. Here, we propose a design of graphene/ionic liquid composites with tunable slit pore sizes, where cations and anions of ionic liquids are intercalated between graphene layers. By varying the sizes of the ions, we show from first-principles density functional theory calculations that the accessible pore size can be tuned from 3.4 to 6.0 Å. Grand canonical Monte Carlo simulations of gas sorption find that the composite materials possess high CO2 uptake at room temperature and 1 bar (up to ~8.5 mmol/g). Further simulations of the sorption of gas mixtures reveal that high CO2/N2 and CO2/CH4 adsorption selectivities can be obtained when the accessible pore size is <5 Å. This work suggests a new strategy to achieve tunable pore sizes via the graphene/IL composites for highly selective CO2/N2 and CO2/CH4 adsorption.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
- Grant/Contract Number:
- AC05-00OR22725; AC02-05CH11231
- OSTI ID:
- 1808178
- Journal Information:
- ACS Applied Materials and Interfaces, Journal Name: ACS Applied Materials and Interfaces Journal Issue: 15 Vol. 13; ISSN 1944-8244
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Continuously Tunable Pore Size for Gas Separation via a Bilayer Nanoporous Graphene Membrane