Turbulent transport and mixing in the multimode narrowband Richtmyer-Meshkov instability
- Univ. of Sydney, NSW (Australia)
- CEA, DAM, DIF, Arpajon (France)
- Univ. of North Carolina, Charlotte, NC (United States)
- Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
- Atomic Weapons Research Establishment (AWRE), Aldermaston (United Kingdom)
The mean momentum and heavy mass fraction, turbulent kinetic energy, and heavy mass fraction variance fields, as well as the budgets of their transport equations are examined several times during the evolution of a narrowband Richtmyer-Meshkov instability initiated by a Mach 1.84 shock traversing a perturbed interface separating gases with a density ratio of 3. The results are computed using the “quarter scale” data from four algorithms presented in the θ-group study of Thornber et al. [“Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer-Meshkov instability: The θ-group collaboration,” Phys. Fluids 29, 105107 (2017)]. The present study is inspired by a previous similar study of Rayleigh-Taylor instability and mixing using direct numerical simulation data by Schilling and Mueschke [“Analysis of turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow using direct numerical simulation data,” Phys. Fluids 22, 105102 (2010)]. In addition to comparing the predictions of the data from four implicit large-eddy simulation codes, the budgets are used to quantify the relative importance of the terms in the transport equations, and the balance of the terms is employed to infer the numerical dissipation. Furthermore, terms arising from the compressibility of the flow are examined, in particular the pressure-dilatation. The results are useful for validation of large-eddy simulation and Reynolds-averaged modeling of Richtmyer-Meshkov instability.
- Research Organization:
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
- Sponsoring Organization:
- Australian Research Council (ARC); USDOE; USDOE National Nuclear Security Administration (NNSA)
- Grant/Contract Number:
- AC52-07NA27344
- OSTI ID:
- 1806420
- Alternate ID(s):
- OSTI ID: 1566267
- Report Number(s):
- LLNL-JRNL--770657; 960167
- Journal Information:
- Physics of Fluids, Journal Name: Physics of Fluids Journal Issue: 9 Vol. 31; ISSN 1070-6631
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
| Instability and Mixing of Gas Interfaces Driven by Cylindrically Converging Shock Wave | preprint | January 2021 |
Three-dimensional simulations of turbulent mixing in spherical implosions
|
journal | November 2019 |
Similar Records
Simulations and models for the Richtmyer–Meshkov instability with broadband perturbations
Journal Article
·
Mon Feb 19 19:00:00 EST 2024
· Physics of Fluids
·
OSTI ID:2565525