Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Negative and zero thermal expansion in α-(Cu2-xZnx)V2O7 solid solutions

Journal Article · · ChemComm
DOI:https://doi.org/10.1039/d0cc04505e· OSTI ID:1780663
 [1];  [2];  [2];  [3];  [4];  [1];  [1]
  1. Univ. of Science and Technology Beijing (China). Beijing Advanced Innovation Center for Materials Genome Engineering
  2. Univ. of Padova (Italy)
  3. Tianjin Normal Univ. (China); Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
Negative or zero thermal expansion (NTE or ZTE) of materials is intriguing for controllable thermal expansion. In this work, we report a series of orthorhombic α-Cu2-xZnxV2O7 (x = 0, 0.1, 0.2), in which the volumetric coefficients of thermal expansion are successfully tuned from -10.19 × 10-6 K-1 to -1.58 × 10-6 K-1 in the temperature range of 100–475 K by increasing the content of Zn2+. It has been revealed that the transverse vibrations of oxygen bonded with vanadium are dominant in the contraction of the bc plane, leading to the overall volume NTE in α-Cu2V2O7. The introduction of Zn2+ densifies the crystal structure, which is presumed to suppress the space of transverse vibrations and results in the ZTE in α-Cu1.8Zn0.2V2O7. This work presents an effective method to realize ZTE in anisotropic framework systems.

Research Organization:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Organization:
National Natural Science Foundation of China (NSFC); Fundamental Research Funds for the Central Universities
Grant/Contract Number:
AC02-06CH11357
OSTI ID:
1780663
Alternate ID(s):
OSTI ID: 1647263
Journal Information:
ChemComm, Journal Name: ChemComm Journal Issue: 73 Vol. 56; ISSN 1359-7345
Publisher:
Royal Society of ChemistryCopyright Statement
Country of Publication:
United States
Language:
English

References (34)

Negative Thermal Expansion in the Metal-Organic Framework Material Cu 3 (1,3,5-benzenetricarboxylate) 2 journal November 2008
Switching Between Giant Positive and Negative Thermal Expansions of a YFe(CN) 6 -based Prussian Blue Analogue Induced by Guest Species journal June 2017
Negative Thermal Expansion in Sc2(WO4)3 journal April 1998
Tailored thermal expansion and electrical properties of α-Cu2V2O7/Al journal November 2016
Negative thermal expansion properties of Cu1.5Mg0.5V2O7 journal June 2019
Negative thermal expansion and electrical properties of α-Cu2V2O7 journal September 2016
Negative volume thermal expansion of monoclinic Cu2-2xZn2xV2O7 in the temperature range from 93 to 673 ​K journal May 2020
Negative thermal expansion property of β-Cu2V2O7 journal December 2019
Triclinic–Cubic Phase Transition and Negative Expansion in the Actinide IV (Th, U, Np, Pu) Diphosphates journal March 2012
Zero Thermal Expansion in a Prussian Blue Analogue journal December 2004
Compositional Dependence of Negative Thermal Expansion in the Prussian Blue Analogues M II Pt IV (CN) 6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd) journal May 2006
Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF 3 journal November 2010
Discovering Large Isotropic Negative Thermal Expansion in Framework Compound AgB(CN) 4 via the Concept of Average Atomic Volume journal April 2020
New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the “Guitar-String” Effect in Cubic ScF 3 journal June 2016
Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF 6 (M = Ca, Mn, Fe, Co, Ni, and Zn) journal October 2016
Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks journal March 2018
Strong Negative Thermal Expansion in a Low-Cost and Facile Oxide of Cu 2 P 2 O 7 journal January 2020
Origin of the Invar effect in iron–nickel alloys journal July 1999
Continuous negative-to-positive tuning of thermal expansion achieved by controlled gas sorption in porous coordination frameworks journal November 2018
Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal–organic framework journal January 2015
Negative thermal expansion in cubic FeFe(CN) 6 Prussian blue analogues journal January 2019
Negative thermal expansion materials † journal January 1999
Microstructural effects on negative thermal expansion extending over a wide temperature range in β -Cu 1.8 Zn 0.2 V 2 O 7 journal October 2018
Rigid unit modes and the negative thermal expansion in ZrW 2 O 8 journal May 1997
Negative thermal expansion materials: technological key for control of thermal expansion journal February 2012
Phase transition and near-zero thermal expansion of Zr 0.5 Hf 0.5 VPO 7 journal June 2018
Giant negative thermal expansion at the nanoscale in the multifunctional material G d 5 ( Si , Ge ) 4 journal October 2019
Negative Thermal Expansion and Magnetic Transition in Anti-Perovskite Structured Mn3Zn1−xSnxN Compounds: Rapid Communications of the American Ceramic Society journal August 2010
Tunable negative thermal expansion and structural evolution in antiperovskite Mn 3 Ga 1− x Ge x N (0 ≤ x ≤ 1.0) journal August 2017
Zero thermal expansion in cubic MgZrF 6 journal August 2017
Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 journal April 1996
Phase relations in the Zn2V2O7-Cu2V2O7 system from room temperature to melting journal October 2008
Two Decades of Negative Thermal Expansion Research: Where Do We Stand? journal June 2012
Giant negative thermal expansion in Fe-doped layered ruthenate ceramics journal October 2017

Similar Records

Strong Negative Thermal Expansion in a Low-Cost and Facile Oxide of Cu2P2O7
Journal Article · Tue Feb 11 23:00:00 EST 2020 · Journal of the American Chemical Society · OSTI ID:1755937

Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN)6 Prussian Blue Analogues
Journal Article · Tue Aug 14 00:00:00 EDT 2018 · Inorganic Chemistry · OSTI ID:1472117