Programmable Anisotropy and Percolation in Supramolecular Patchy Particle Gels
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
- North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering
- Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Koch Institute for Integrative Cancer Research
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
Patchy particle interactions are predicted to facilitate the controlled self-assembly and arrest of particles into phase-stable and morphologically tunable "equilibrium" gels, which avoids the arrested phase separation and subsequent aging that is typically observed in traditional particle gels with isotropic interactions. Despite these promising traits of patchy particle interactions, such tunable equilibrium gels have yet to be realized in the laboratory due to experimental limitations associated with synthesizing patchy particles in high yield. Here, we introduce a supramolecular metal-coordination platform consisting of metallic nanoparticles linked by telechelic polymer chains, which validates the predictions associated with patchy particle interactions and facilitates the design of equilibrium particle hydrogels through limited valency interactions. We demonstrate that the interaction valency and self-assembly of the particles can be effectively controlled by adjusting the relative concentration of polymeric linkers to nanoparticles, which enables the gelation of patchy particle hydrogels with programmable local anisotropy, morphology, and low mechanical percolation thresholds. Moreover, by crowding the local environment around the patchy particles with competing interactions, we introduce an independent method to control the self-assembly of the nanoparticles, thereby enabling the design of highly anisotropic particle hydrogels with substantially reduced percolation thresholds. We thus establish a canonical platform that facilitates multifaceted control of the self-assembly of the patchy nanoparticles en route to the design of patchy particle gels with tunable valencies, morphologies, and percolation thresholds. These advances lay important foundations for further fundamental studies of patchy particle systems and for designing tunable gel materials that address a wide range of engineering applications.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- Army Research Office; Massachusetts Institute of Technology (MIT); National Science Foundation (NSF)
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1777907
- Journal Information:
- ACS Nano, Journal Name: ACS Nano Journal Issue: 12 Vol. 14; ISSN 1936-0851
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Structure and phase behavior of polymer-linked colloidal gels
Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods
Tunable Percolation in Semiconducting Binary Polymer Nanoparticle Glasses
Journal Article
·
Sun Sep 22 20:00:00 EDT 2019
· Journal of Chemical Physics
·
OSTI ID:1599035
Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods
Journal Article
·
Tue Dec 20 19:00:00 EST 2011
· Journal of Chemical Physics
·
OSTI ID:1876029
Tunable Percolation in Semiconducting Binary Polymer Nanoparticle Glasses
Journal Article
·
Sun Feb 07 19:00:00 EST 2016
· Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
·
OSTI ID:1370309