skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of the Anionic Zinc-Adeninate Metal–Organic Framework Structure on the Luminescent Detection of Rare Earth Ions in Aqueous Streams

Journal Article · · ACS Applied Materials and Interfaces

Rare earth elements (REEs) are critical to numerous technologies; however, a combination of increasing demand, environmental concerns, and monopolistic marketplace conditions has spurred interest in boosting the domestic REE production from sources such as coal utilization byproducts. The economic viability of this approach requires rapid, inexpensive, and sensitive analytical techniques capable of characterizing the REE content during resource exploration and downstream REE processing (e.g., analyzing REE separation, concentration, and purification production steps). Luminescence-based sensors are attractive because many REEs may be sensitized to produce element-specific emission. Hence, a single material may simultaneously detect and distinguish multiple REEs. Metal–organic frameworks (MOFs) can sensitize multiple REEs, but their viability has been hindered by sensitivity and selectivity challenges. Understanding how the MOF structure impacts the REE sensing efficacy is critical to the rational design of new sensors. Here, we evaluate the sensing performance of seven different anionic zinc-adeninate MOFs with different organic linkers and/or structures for the visible-emitting REEs Tb, Dy, Sm, and Eu. The choice of a linker determines which REEs are sensitized and significantly influences their sensitivity and selectivity against competing species (here, Fe(II) and HCl). For a given linker, structural changes to the MOF can further fine-tune the performance. The MOFs produce some of the lowest detection limits (sub-10 ppb for Tb) reported for the aqueous sensitization-based REE detection. Importantly, the most selective MOFs demonstrated the ability to sensitize the REE signal at sub-ppm levels in a REE-spiked acid mine drainage matrix, highlighting their potential for use in real-world sensing applications.

Research Organization:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
Sponsoring Organization:
USDOE Office of Fossil Energy (FE)
Grant/Contract Number:
FWP-1022420
OSTI ID:
1767037
Alternate ID(s):
OSTI ID: 1767036
Journal Information:
ACS Applied Materials and Interfaces, Vol. 13, Issue 6; Conference: Conference Name: Pittcon 2021 Location: Virtual Start Date: 3/8/2021 12:00:00 AM End Date: 3/12/2021 12:00:00 AM; ISSN 1944-8244
Publisher:
American Chemical Society (ACS)Copyright Statement
Country of Publication:
United States
Language:
English