Kinetic versus Thermodynamic Stability of LLZO in Contact with Lithium Metal
Journal Article
·
· Chemistry of Materials
- Argonne National Lab. (ANL), Lemont, IL (United States)
- Justus-Liebig-University Giessen, Giessen (Germany)
- Univ. of Michigan, Ann Arbor, MI (United States)
Li7La3Zr2O12 (LLZO) garnet-based oxides are a promising class of solid electrolytes used as the separator in all-solid-state batteries (ASSBs). While LLZO is considered to have a wide electrochemical stability window, its intrinsic stability in contact with lithium metal is not sufficiently well understood, and there is still a debate on the key question of whether LLZO does or does not form passivation layers before and during cycling. Utilizing both in situ and operando X-ray photoelectron spectroscopy techniques, in this work we reveal the presence of a kinetic barrier to the reduction of LLZO by Li metal, with the extent of oxygen-deficient interphase (ODI) formation depending sensitively on the energetics of Li metal arriving at the Li vertical bar LLZO interface. Despite the clear presence of a kinetic barrier to reduction, the electrochemical response of the Li vertical bar LLZO interface is unchanged by the presence of the ODI, indicating that ODI formation during electrochemical cycling does not hinder charge transfer across the Li vertical bar LLZO interface. Overall, these results reveal that the reactivity of LLZO with Li metal depends not only on the material properties of the adjoining phases (i.e., surface purity and active contact) and their resulting thermodynamic stability but also on the energy input at the interface and the resulting reaction kinetics. Furthermore, the presence of a kinetic barrier to reduction highlights the additional complexities governing the reactivity of solid-state interfaces in ASSBs and underscores the importance of operando characterization of interfacial stability to design more robust, high-performance protection strategies for solid electrolytes in contact with reactive electrodes.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- Funds of the Chemical Industry (FCI); German Federal Ministry of Education and Research (BMBF); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1764985
- Journal Information:
- Chemistry of Materials, Journal Name: Chemistry of Materials Journal Issue: 23 Vol. 32; ISSN 0897-4756
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal
Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)
Journal Article
·
Sat Feb 09 19:00:00 EST 2019
· Advanced Energy Materials
·
OSTI ID:1508374
Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)
Journal Article
·
Tue Dec 15 19:00:00 EST 2015
· Chemistry of Materials
·
OSTI ID:1261353