Microtearing instabilities and electron thermal transport in low and high collisionality NSTX discharges
- Lehigh Univ., Bethlehem, PA (United States); Lehigh University
- Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
- Lehigh Univ., Bethlehem, PA (United States)
- Chalmers Univ. of Technology and EURATOM-VR Association, Gothenburg (Sweden)
Microtearing mode (MTM) real frequency, growth rate, magnetic fluctuation amplitude and resulting electron thermal transport are studied in systematic NSTX scans of relevant plasma parameters. Here, the dependency of the MTM real frequency and growth rate on plasma parameters, suitable for low and high collision NSTX discharges, is obtained by using the reduced MTM transport model. The plasma parameter dependencies are compared and found to be consistent with the results obtained from MTM using the Gyrokinetic GYRO code. The scaling trend of collision frequency and plasma beta is found to be consistent with the global energy confinement trend observed in the NSTX experiment. The strength of the magnetic fluctuation is found to be consistent with the gyrokinetic estimate. In earlier studies, it was found that the version of the Multi-Mode (MM) anomalous transport model, which did not contain the effect of MTMs, provided an appropriate description of the electron temperature profiles in standard tokamak discharges and not in spherical tokamaks. When the MM model, which involves transport associated with MTMs, is incorporated in the TRANSP code and is used in the study of electron thermal transport in NSTX discharges, it is observed that the agreement with the experimental electron temperature profile is substantially improved.
- Research Organization:
- Lehigh Univ., Bethlehem, PA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES)
- Grant/Contract Number:
- SC0013977
- OSTI ID:
- 1763967
- Alternate ID(s):
- OSTI ID: 1970595
- Journal Information:
- Physics of Plasmas, Journal Name: Physics of Plasmas Journal Issue: 2 Vol. 28; ISSN 1070-664X
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Simulation Of Microtearing Turbulence In NSTX