skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GPU Direct I/O with HDF5

Conference ·

Exascale HPC systems are being designed with accelerators, such as GPUs, to accelerate parts of applications. In machine learning workloads as well as large-scale simulations that use GPUs as accelerators, the CPU (or host) memory is currently used as a buffer for data transfers between GPU (or device) memory and the file system. If the CPU does not need to operate on the data, then this is sub-optimal because it wastes host memory by reserving space for duplicated data. Furthermore, this “bounce buffer” approach wastes CPU cycles spent on transferring data. A new technique, NVIDIA GPUDirect Storage (GDS), can eliminate the need to use the host memory as a bounce buffer. Thereby, it becomes possible to transfer data directly between the device memory and the file system. This direct data path shortens latency by omitting the extra copy and enables higher-bandwidth. To take full advantage of GDS in existing applications, it is necessary to provide support with existing I/O libraries, such as HDF5 and MPI-IO, which are heavily used in applications. In this paper, we describe our effort of integrating GDS with HDF5, the top I/O library at NERSC and at DOE leadership computing facilities. We design and implement this integration using a HDF5 Virtual File Driver (VFD). The GDS VFD provides a file system abstraction to the application that allows HDF5 applications to perform I/O without the need to move data between CPUs and GPUs explicitly. We compare performance of the HDF5 GDS VFD with explicit data movement approaches and demonstrate superior performance with the GDS method.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1760260
Resource Relation:
Conference: 2020 IEEE/ACM Fifth International Parallel Data Systems Workshop (PDSW), GA (United States), 12-12 Nov 2020
Country of Publication:
United States
Language:
English

Similar Records

Developing And Scaling an OpenFOAM Model to Study Turbulent Flow in a HFIR Coolant Channel
Technical Report · Fri Mar 01 00:00:00 EST 2024 · OSTI ID:1760260

Storage-Intensive Supercomputing Benchmark Study
Technical Report · Tue Oct 30 00:00:00 EDT 2007 · OSTI ID:1760260

Tuning HDF5 subfiling performance on parallel file systems
Conference · Fri May 12 00:00:00 EDT 2017 · OSTI ID:1760260

Related Subjects