skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Buckling analysis of cylindrical shells with cracks

Conference ·
OSTI ID:175436

In many areas of aeronautical nuclear and civil engineering practice, large thin-walled structural panels are increasingly becoming characteristic architectural features. Indeed, nuclear reactor vessels and cryogenic tanks of a launcher, for instance, are made up of several thin-walled panels welded together. Instability and buckling phenomenon present over-riding constraints on the design process. In addition, the presence of joints which are very often the origin of surface fissures poses increasing dangers on the overall stability of these structures. This research deals with the analysis of the effects of cracks on the behavior of cylindrical shells subject to external pressure. The study was divided into two major parts. In the first part, experiments were carried out with shells without cracks, in order to obtain reference data. A numerical study of various models explains the experimental results and shows the combined effect of the geometric imperfections and boundary conditions on the critical load. The second part focused on several experimental tests and numerical simulations on shells with in- depth fissures as a function of their population, orientation, length and position with respect to the welds or joints. The agreement between numerical and experimental results confirms the new possibility to design with the aid of the finite element program under the condition that the calculations are carried out by means of an appropriate numerical method.

OSTI ID:
175436
Report Number(s):
CONF-950686-; TRN: 95:006111-0427
Resource Relation:
Conference: Joint applied mechanics and materials summer meeting, Los Angeles, CA (United States), 28-30 Jun 1995; Other Information: PBD: 1995; Related Information: Is Part Of AMD - MD `95: Summer conference; PB: 520 p.
Country of Publication:
United States
Language:
English