Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Materials Data on Li4Co3O7 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1744011· OSTI ID:1744011

Li4Co3O7 is Caswellsilverite-like structured and crystallizes in the monoclinic C2/m space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with three equivalent LiO6 octahedra, corners with three equivalent CoO6 octahedra, edges with five CoO6 octahedra, and edges with seven LiO6 octahedra. The corner-sharing octahedra tilt angles range from 3–11°. There are a spread of Li–O bond distances ranging from 2.01–2.18 Å. In the second Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–7°. There are a spread of Li–O bond distances ranging from 2.08–2.16 Å. In the third Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six CoO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–6°. There are a spread of Li–O bond distances ranging from 2.09–2.16 Å. In the fourth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent CoO6 octahedra, edges with two equivalent CoO6 octahedra, and edges with ten LiO6 octahedra. The corner-sharing octahedra tilt angles range from 3–6°. There are four shorter (2.19 Å) and two longer (2.22 Å) Li–O bond lengths. In the fifth Li1+ site, Li1+ is bonded to six O2- atoms to form LiO6 octahedra that share corners with six equivalent LiO6 octahedra, edges with four equivalent CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 6–11°. There are two shorter (2.02 Å) and four longer (2.13 Å) Li–O bond lengths. There are three inequivalent Co+3.33+ sites. In the first Co+3.33+ site, Co+3.33+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with four CoO6 octahedra, and edges with eight LiO6 octahedra. The corner-sharing octahedra tilt angles range from 3–7°. There are a spread of Co–O bond distances ranging from 1.73–2.14 Å. In the second Co+3.33+ site, Co+3.33+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–8°. There are a spread of Co–O bond distances ranging from 1.89–2.09 Å. In the third Co+3.33+ site, Co+3.33+ is bonded to six O2- atoms to form CoO6 octahedra that share corners with six LiO6 octahedra, edges with six LiO6 octahedra, and edges with six CoO6 octahedra. The corner-sharing octahedra tilt angles range from 2–6°. There are a spread of Co–O bond distances ranging from 1.92–2.09 Å. There are seven inequivalent O2- sites. In the first O2- site, O2- is bonded to three Li1+ and three Co+3.33+ atoms to form a mixture of corner and edge-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–1°. In the second O2- site, O2- is bonded to five Li1+ and one Co+3.33+ atom to form a mixture of corner and edge-sharing OLi5Co octahedra. The corner-sharing octahedra tilt angles range from 0–8°. In the third O2- site, O2- is bonded to three Li1+ and three Co+3.33+ atoms to form OLi3Co3 octahedra that share corners with six OLi4Co2 octahedra and edges with twelve OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–7°. In the fourth O2- site, O2- is bonded to four Li1+ and two equivalent Co+3.33+ atoms to form OLi4Co2 octahedra that share corners with six OLi3Co3 octahedra and edges with twelve OLi5Co octahedra. The corner-sharing octahedra tilt angles range from 0–7°. In the fifth O2- site, O2- is bonded to three Li1+ and three Co+3.33+ atoms to form a mixture of corner and edge-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 1–8°. In the sixth O2- site, O2- is bonded to three Li1+ and three Co+3.33+ atoms to form a mixture of corner and edge-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–1°. In the seventh O2- site, O2- is bonded to three equivalent Li1+ and three equivalent Co+3.33+ atoms to form a mixture of corner and edge-sharing OLi3Co3 octahedra. The corner-sharing octahedra tilt angles range from 0–1°.

Research Organization:
LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Organization:
The Materials Project; MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1744011
Report Number(s):
mp-1174353
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on Li4Co3O7 by Materials Project
Dataset · Sat May 02 00:00:00 EDT 2020 · OSTI ID:1695872

Materials Data on Li4Co3O7 by Materials Project
Dataset · Thu Jan 10 23:00:00 EST 2019 · OSTI ID:1747586

Materials Data on Li4Co3O7 by Materials Project
Dataset · Sun May 03 00:00:00 EDT 2020 · OSTI ID:1672213