Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Materials Data on Zr2P3H3O13 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1737261· OSTI ID:1737261
Zr2P3H3O13 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are four inequivalent Zr4+ sites. In the first Zr4+ site, Zr4+ is bonded to six O2- atoms to form ZrO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Zr–O bond distances ranging from 2.06–2.21 Å. In the second Zr4+ site, Zr4+ is bonded to six O2- atoms to form ZrO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Zr–O bond distances ranging from 2.07–2.16 Å. In the third Zr4+ site, Zr4+ is bonded to six O2- atoms to form ZrO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Zr–O bond distances ranging from 2.06–2.17 Å. In the fourth Zr4+ site, Zr4+ is bonded to six O2- atoms to form ZrO6 octahedra that share corners with six PO4 tetrahedra. There are a spread of Zr–O bond distances ranging from 2.06–2.21 Å. There are six inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four ZrO6 octahedra. The corner-sharing octahedra tilt angles range from 23–35°. There is three shorter (1.54 Å) and one longer (1.57 Å) P–O bond length. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four ZrO6 octahedra. The corner-sharing octahedra tilt angles range from 24–32°. There is one shorter (1.54 Å) and three longer (1.55 Å) P–O bond length. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four ZrO6 octahedra. The corner-sharing octahedra tilt angles range from 22–34°. There are a spread of P–O bond distances ranging from 1.53–1.57 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four ZrO6 octahedra. The corner-sharing octahedra tilt angles range from 25–37°. There are a spread of P–O bond distances ranging from 1.53–1.56 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four ZrO6 octahedra. The corner-sharing octahedra tilt angles range from 19–28°. There is three shorter (1.54 Å) and one longer (1.55 Å) P–O bond length. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four ZrO6 octahedra. The corner-sharing octahedra tilt angles range from 20–33°. There is one shorter (1.54 Å) and three longer (1.55 Å) P–O bond length. There are six inequivalent H1+ sites. In the first H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the second H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.05 Å) and one longer (1.47 Å) H–O bond length. In the third H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the fourth H1+ site, H1+ is bonded in a distorted linear geometry to two O2- atoms. There is one shorter (1.05 Å) and one longer (1.46 Å) H–O bond length. In the fifth H1+ site, H1+ is bonded in a distorted linear geometry to two O2- atoms. There is one shorter (1.03 Å) and one longer (1.57 Å) H–O bond length. In the sixth H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.03 Å) and one longer (1.54 Å) H–O bond length. There are twenty-six inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the fourteenth O2- site, O2- is bonded in a trigonal planar geometry to three H1+ atoms. In the fifteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the sixteenth O2- site, O2- is bonded in a 3-coordinate geometry to one Zr4+, one P5+, and one H1+ atom. In the seventeenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the twentieth O2- site, O2- is bonded in a 3-coordinate geometry to one Zr4+, one P5+, and one H1+ atom. In the twenty-first O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the twenty-second O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the twenty-third O2- site, O2- is bonded in a 3-coordinate geometry to one Zr4+, one P5+, and one H1+ atom. In the twenty-fourth O2- site, O2- is bonded in a 3-coordinate geometry to one Zr4+, one P5+, and one H1+ atom. In the twenty-fifth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Zr4+ and one P5+ atom. In the twenty-sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Zr4+ and one P5+ atom.
Research Organization:
LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Organization:
The Materials Project; MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1737261
Report Number(s):
mp-1216369
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on Zr2P2SO12 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1729457

Materials Data on BaCaZr8(PO4)12 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1729595

Materials Data on MgZr4(PO4)6 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1713391