Impacts of Stochastic Mixing in Idealized Convection-Permitting Simulations of Squall Lines
- Univ. of Utah, Salt Lake City, UT (United States)
- National Center for Atmospheric Research, Boulder, CO (United States)
- Univ. of Utah, Salt Lake City, UT (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
This study investigates impacts of altering subgrid-scale mixing in “convection-permitting” kilometer-scale horizontal-grid-spacing (Δh) simulations by applying either constant or stochastic multiplicative factors to the horizontal mixing coefficients within the Weather Research and Forecasting Model. In quasi-idealized 1-km Δh simulations of two observationally based squall-line cases, constant enhanced mixing produces larger updraft cores that are more dilute at upper levels, weakens the cold pool, rear-inflow jet, and front-to-rear flow of the squall line, and degrades the model’s effective resolution. Reducing mixing by a constant multiplicative factor has the opposite effect on all metrics. Completely turning off parameterized horizontal mixing produces bulk updraft statistics and squall-line mesoscale structure closest to an LES “benchmark” among all 1-km simulations, although the updraft cores are too undilute. The stochastic mixing scheme, which applies a multiplicative factor to the mixing coefficients that varies stochastically in time and space, is employed at 0.5-, 1-, and 2-km Δh. It generally reduces midlevel vertical velocities and enhances upper-level vertical velocities compared to simulations using the standard mixing scheme, with more substantial impacts at 1- and 2-km Δh compared to 0.5-km Δh. Further, the stochastic scheme also increases updraft dilution to better agree with the LES for one case, but has less impact on the other case. Stochastic mixing acts to weaken the cold pool but without a significant impact on squall-line propagation. It also does not affect the model’s overall effective resolution unlike applying constant multiplicative factors to the mixing coefficients.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); National Center for Atmospheric Research, Boulder, CO (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Biological and Environmental Research (BER)
- Grant/Contract Number:
- AC05-76RL01830; SC0016476
- OSTI ID:
- 1735951
- Alternate ID(s):
- OSTI ID: 1786978
- Report Number(s):
- PNNL-SA--156541
- Journal Information:
- Monthly Weather Review, Journal Name: Monthly Weather Review Journal Issue: 12 Vol. 148; ISSN 0027-0644
- Publisher:
- American Meteorological SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Evaluation of a Stochastic Mixing Scheme in the Deep Convective Gray Zone Using a Tropical Oceanic Deep Convection Case Study