skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: System Design of a 2.0 MWth Sodium/Molten Salt Pilot System

Conference ·
DOI:https://doi.org/10.1115/ES2020-1622· OSTI ID:1726069

Nitrate molten salt concentrating solar power (CSP) systems are currently deployed globally and are considered state-of the art heat transfer fluids (HTFs) for present day high-temperature operation. Although slightly higher limits may be possible with molten salt, to fully realize SunShot efficiency goals of $15/kWhth HTFs and an LCOE of 6¢/kWh, HTF technologies working at higher temperatures (e.g., 650 °C to 750 °C) will require an alternative to molten salts, such as with alkali metal systems. This investigation explores the development of a 2.0 MWth sodium receiver system that employs a sodium receiver as the HTF, as well as with a ternary chloride (20%NaCl/40%MgCl/40%KCl by mol wt.%) salt as a thermal energy storage (TES) medium to facilitate a 6-hr. storage duration. A sodium-to-salt heat exchanger model as well as a salt-to-sCO2 primary heat exchanger model are employed and evaluated in this investigation. A thermodynamic system design model was developed using Engineering Equation Solver (EES) where state properties were calculated at inlets and outlets along both hot and cold legs of the pilot-scale plant. This investigation assesses receiver performance as well as system efficiency studies for the pump and system operational ranges. Results found that high efficiency sodium receivers were found to have higher heat transfer coefficients and required far less spreading of incident flux. The system performance model results suggest that for a pump speed of 2400 RPM, respective hot and cold pump TDH values were determined to be 260.1–307 ft. and 260.1–307 ft for pump flow rates of 90–120 GPM.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
DOE Contract Number:
DE-AC36-08GO28308
OSTI ID:
1726069
Report Number(s):
NREL/CP-5700-76070; MainId:7004; UUID:e1a4cc32-404c-ea11-9c31-ac162d87dfe5; MainAdminID:18897
Resource Relation:
Conference: Presented at the ASME 2020 14th International Conference on Energy Sustainability, 17-18 June 2020
Country of Publication:
United States
Language:
English