Uniaxial compression of [001]-oriented CaFe2As2 single crystals:the effects of microstructure and temperature on superelasticity Part I: Experimental observations
- Univ. of Connecticut, Storrs, CT (United States)
- Colorado State Univ., Fort Collins, CO (United States)
- Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)
Micropillar compression experiments on [001]-oriented CaFe2As2 single crystals have recently revealed the existence of superelasticity with a remarkably high elastic limit of over 10%. The collapsed tetragonal phase transition, which is a uni-axial contraction process in which As-As bonds are formed across an intervening Ca-plane, is the main mechanism of superelasticity. Usually, superelasticity and the related structural transitions are affected strongly by both the microstructure and the temperature. As such, in this study, we investigated how the microstructure and temperature affect the superelasticity of [001]-oriented CaFe2As2 micropillars cut from solution-grown single crystals, by performing a combination of in-situ cryogenic micromechanical testing and transmission electron microscopy studies. Our results show that the microstructure of CaFe2As2 is influenced strongly by the crystal growth conditions and by subsequent heat treatment. The presence of Ca and As vacancies and FeAs nanoprecipitates affect the mechanical behavior significantly. In addition, the onset stress for the collapsed tetragonal transition decreases gradually as the temperature decreases. These experimental results are discussed primarily in terms of the formation of As-As bonds, which is the essential feature of this mechanism for superelasticity. Our research outcomes provide a more fundamental understanding of the superelasticity exhibited by CaFe2As2 under uni-axial compression.
- Research Organization:
- Ames Laboratory (AMES), Ames, IA (United States); Iowa State Univ., Ames, IA (United States)
- Sponsoring Organization:
- National Aeronautics and Space Administration (NASA); USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
- Grant/Contract Number:
- AC02-07CH11358
- OSTI ID:
- 1722883
- Alternate ID(s):
- OSTI ID: 1780074
- Report Number(s):
- IS--J-10,368
- Journal Information:
- Acta Materialia, Journal Name: Acta Materialia Vol. 203; ISSN 1359-6454
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Superelasticity and cryogenic linear shape memory effects of CaFe2As2
Tension-compression asymmetry in superelasticity of SrNi2P2 single crystals and the influence of low temperatures