Materials Data on AlH30CS2NO20 by Materials Project
Al(H2O)12CH3NH3(SO4)2 crystallizes in the orthorhombic Pca2_1 space group. The structure is zero-dimensional and consists of four methylammonium molecules, eight sulfuric acid molecules, and four Al(H2O)12 clusters. In each Al(H2O)12 cluster, Al3+ is bonded in an octahedral geometry to six O2- atoms. There is one shorter (1.89 Å) and five longer (1.91 Å) Al–O bond length. There are twenty-four inequivalent H1+ sites. In the first H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the second H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.02 Å) and one longer (1.56 Å) H–O bond length. In the third H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the fourth H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.03 Å) and one longer (1.54 Å) H–O bond length. In the fifth H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.03 Å) and one longer (1.56 Å) H–O bond length. In the sixth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the seventh H1+ site, H1+ is bonded in a distorted single-bond geometry to one O2- atom. The H–O bond length is 1.00 Å. In the eighth H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.01 Å) and one longer (1.60 Å) H–O bond length. In the ninth H1+ site, H1+ is bonded in a linear geometry to two O2- atoms. There is one shorter (1.03 Å) and one longer (1.54 Å) H–O bond length. In the tenth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the eleventh H1+ site, H1+ is bonded in a distorted single-bond geometry to one O2- atom. The H–O bond length is 1.00 Å. In the twelfth H1+ site, H1+ is bonded in a distorted linear geometry to two O2- atoms. There is one shorter (1.02 Å) and one longer (1.61 Å) H–O bond length. In the thirteenth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the fourteenth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the fifteenth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 1.00 Å. In the sixteenth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the seventeenth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 1.00 Å. In the eighteenth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the nineteenth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the twentieth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the twenty-first H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the twenty-second H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the twenty-third H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the twenty-fourth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. There are twelve inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal planar geometry to one Al3+ and two H1+ atoms. In the second O2- site, O2- is bonded in a distorted trigonal planar geometry to one Al3+ and two H1+ atoms. In the third O2- site, O2- is bonded in a distorted trigonal planar geometry to one Al3+ and two H1+ atoms. In the fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Al3+ and two H1+ atoms. In the fifth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Al3+ and two H1+ atoms. In the sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Al3+ and two H1+ atoms. In the seventh O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the eighth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to three H1+ atoms. In the ninth O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the tenth O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the eleventh O2- site, O2- is bonded in a trigonal non-coplanar geometry to three H1+ atoms. In the twelfth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to three H1+ atoms.
- Research Organization:
- LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- Contributing Organization:
- The Materials Project; MIT; UC Berkeley; Duke; U Louvain
- DOE Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1722673
- Report Number(s):
- mp-1205233
- Country of Publication:
- United States
- Language:
- English
Similar Records
Materials Data on AlH11SO10 by Materials Project
Materials Data on AlH21C3(SO5)3 by Materials Project