skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li3Fe2(P2O7)2 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1710551· OSTI ID:1710551

Li3Fe2(P2O7)2 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are twelve inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 trigonal pyramids that share corners with four PO4 tetrahedra, a cornercorner with one FeO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.89–1.96 Å. In the second Li1+ site, Li1+ is bonded in a 6-coordinate geometry to six O2- atoms. There are a spread of Li–O bond distances ranging from 1.90–2.71 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra, a cornercorner with one FeO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.82–2.05 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, a cornercorner with one FeO5 trigonal bipyramid, and an edgeedge with one FeO6 octahedra. There are a spread of Li–O bond distances ranging from 1.94–2.13 Å. In the fifth Li1+ site, Li1+ is bonded to five O2- atoms to form distorted LiO5 trigonal bipyramids that share a cornercorner with one FeO6 octahedra, a cornercorner with one LiO4 tetrahedra, corners with three PO4 tetrahedra, a cornercorner with one FeO5 trigonal bipyramid, a cornercorner with one LiO4 trigonal pyramid, an edgeedge with one FeO6 octahedra, and an edgeedge with one PO4 tetrahedra. The corner-sharing octahedral tilt angles are 60°. There are a spread of Li–O bond distances ranging from 1.94–2.22 Å. In the sixth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.94–2.34 Å. In the seventh Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 trigonal pyramids that share corners with four PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, a cornercorner with one FeO5 trigonal bipyramid, and an edgeedge with one FeO6 octahedra. There are a spread of Li–O bond distances ranging from 1.87–2.23 Å. In the eighth Li1+ site, Li1+ is bonded to four O2- atoms to form LiO4 tetrahedra that share corners with four PO4 tetrahedra, a cornercorner with one FeO5 trigonal bipyramid, and an edgeedge with one LiO4 tetrahedra. There are a spread of Li–O bond distances ranging from 1.93–1.97 Å. In the ninth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 2.01–2.46 Å. In the tenth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with four PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Li–O bond distances ranging from 1.84–2.00 Å. In the eleventh Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 trigonal pyramids that share corners with four PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Li–O bond distances ranging from 1.82–2.10 Å. In the twelfth Li1+ site, Li1+ is bonded in a 5-coordinate geometry to five O2- atoms. There are a spread of Li–O bond distances ranging from 1.92–2.42 Å. There are eight inequivalent Fe+2.50+ sites. In the first Fe+2.50+ site, Fe+2.50+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, an edgeedge with one LiO4 tetrahedra, and an edgeedge with one FeO5 trigonal bipyramid. There are a spread of Fe–O bond distances ranging from 1.94–2.27 Å. In the second Fe+2.50+ site, Fe+2.50+ is bonded to five O2- atoms to form FeO5 trigonal bipyramids that share corners with five PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, a cornercorner with one LiO4 trigonal pyramid, and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 2.07–2.22 Å. In the third Fe+2.50+ site, Fe+2.50+ is bonded to five O2- atoms to form FeO5 trigonal bipyramids that share corners with two LiO4 tetrahedra, corners with five PO4 tetrahedra, and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.94–2.17 Å. In the fourth Fe+2.50+ site, Fe+2.50+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra, an edgeedge with one LiO5 trigonal bipyramid, and an edgeedge with one FeO5 trigonal bipyramid. There are a spread of Fe–O bond distances ranging from 1.98–2.15 Å. In the fifth Fe+2.50+ site, Fe+2.50+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra, an edgeedge with one FeO5 trigonal bipyramid, and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 1.91–2.21 Å. In the sixth Fe+2.50+ site, Fe+2.50+ is bonded to five O2- atoms to form distorted FeO5 trigonal bipyramids that share a cornercorner with one LiO4 tetrahedra, corners with five PO4 tetrahedra, a cornercorner with one LiO4 trigonal pyramid, and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 2.04–2.22 Å. In the seventh Fe+2.50+ site, Fe+2.50+ is bonded in a 6-coordinate geometry to six O2- atoms. There are a spread of Fe–O bond distances ranging from 2.03–2.68 Å. In the eighth Fe+2.50+ site, Fe+2.50+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 trigonal pyramid. There are a spread of Fe–O bond distances ranging from 2.07–2.27 Å. There are sixteen inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two FeO5 trigonal bipyramids, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedral tilt angles are 49°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one FeO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 35°. There are a spread of P–O bond distances ranging from 1.48–1.61 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, a cornercorner with one FeO5 trigonal bipyramid, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedral tilt angles are 57°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra, a cornercorner with one LiO4 tetrahedra, a cornercorner with one PO4 tetrahedra, and an edgeedge with one LiO5 trigonal bipyramid. The corner-sharing octahedra tilt angles range from 19–56°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra, a cornercorner with one LiO4 tetrahedra, and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 30–51°. There are a spread of P–O bond distances ranging from 1.52–1.60 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, and corners with two FeO5 trigonal bipyramids. The corner-sharing octahedral tilt angles are 52°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, corners with two FeO5 trigonal bipyramids, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedral tilt angles are 47°. There are a spread of P–O bond distances ranging from 1.52–1.60 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one LiO4 tetrahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one FeO5 trigonal bipyramid, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedral tilt angles are 31°. There are a spread of P–O bond distances ranging from 1.50–1.62 Å. In the ninth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 32°. There are a spread of P–O bond distances ranging from 1.48–1.63 Å. In the tenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one LiO4 tetrahedra, a cornercorner with one PO4 tetrahedra, and a cornercorner with one FeO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 56°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the eleventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one PO4 tetrahedra, corners with two LiO4 tetrahedra, and a cornercorner with one FeO5 trigonal bipyramid. The corner-sharing octahedral tilt angles are 54°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the twelfth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one LiO5 trigonal bipyramid, and corners with two LiO4 trigonal pyramids. The corner-sharing octahedra tilt angles range from 29–50°. There are a spread of P–O bond distances ranging from 1.53–1.61 Å. In the thirteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 trigonal pyramids. The corner-sharing octahedra tilt angles range from 32–47°. There are a spread of P–O bond distances ranging from 1.52–1.61 Å. In the fourteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one LiO4 tetrahedra, a cornercorner with one PO4 tetrahedra, corners with two FeO5 trigonal bipyramids, and corners with two LiO4 trigonal pyramids. The corner-sharing octahedral tilt angles are 52°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the fifteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one LiO4 tetrahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one FeO5 trigonal bipyramid, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedral tilt angles are 36°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the sixteenth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one FeO6 octahedra, a cornercorner with one PO4 tetrahedra, a cornercorner with one FeO5 trigonal bipyramid, and a cornercorner with one LiO4 trigonal pyramid. The corner-sharing octahedral tilt angles are 56°.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1710551
Report Number(s):
mp-1177912
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on Li3Fe2(P2O7)2 by Materials Project
Dataset · Thu Apr 30 00:00:00 EDT 2020 · OSTI ID:1710551

Materials Data on Li3Fe2(P2O7)2 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1710551

Materials Data on Li5Fe4(P2O7)4 by Materials Project
Dataset · Sat May 02 00:00:00 EDT 2020 · OSTI ID:1710551