skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on CaB6(H4O7)2 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1710105· OSTI ID:1710105

CaB6(H4O7)2 crystallizes in the monoclinic P2_1/c space group. The structure is two-dimensional and consists of two CaB6(H4O7)2 sheets oriented in the (0, 0, 1) direction. Ca2+ is bonded in a 9-coordinate geometry to nine O2- atoms. There are a spread of Ca–O bond distances ranging from 2.42–2.74 Å. There are six inequivalent B3+ sites. In the first B3+ site, B3+ is bonded to four O2- atoms to form corner-sharing BO4 tetrahedra. There is three shorter (1.47 Å) and one longer (1.52 Å) B–O bond length. In the second B3+ site, B3+ is bonded to four O2- atoms to form corner-sharing BO4 tetrahedra. There are a spread of B–O bond distances ranging from 1.46–1.53 Å. In the third B3+ site, B3+ is bonded in a trigonal planar geometry to three O2- atoms. There are a spread of B–O bond distances ranging from 1.36–1.39 Å. In the fourth B3+ site, B3+ is bonded to four O2- atoms to form corner-sharing BO4 tetrahedra. There are a spread of B–O bond distances ranging from 1.46–1.51 Å. In the fifth B3+ site, B3+ is bonded in a trigonal planar geometry to three O2- atoms. There is two shorter (1.37 Å) and one longer (1.38 Å) B–O bond length. In the sixth B3+ site, B3+ is bonded in a trigonal planar geometry to three O2- atoms. There is two shorter (1.37 Å) and one longer (1.39 Å) B–O bond length. There are eight inequivalent H1+ sites. In the first H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the second H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the third H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the fourth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.98 Å. In the fifth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 1.00 Å. In the sixth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.99 Å. In the seventh H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 0.97 Å. In the eighth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 1.00 Å. There are fourteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Ca2+ and two B3+ atoms. In the second O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Ca2+ and two B3+ atoms. In the third O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one B3+ and one H1+ atom. In the fourth O2- site, O2- is bonded in a water-like geometry to one Ca2+ and two H1+ atoms. In the fifth O2- site, O2- is bonded in a distorted water-like geometry to one B3+ and one H1+ atom. In the sixth O2- site, O2- is bonded in a bent 120 degrees geometry to one Ca2+ and two B3+ atoms. In the seventh O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Ca2+ and two B3+ atoms. In the eighth O2- site, O2- is bonded in a bent 120 degrees geometry to one Ca2+ and two B3+ atoms. In the ninth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Ca2+ and two B3+ atoms. In the tenth O2- site, O2- is bonded in a bent 120 degrees geometry to two B3+ atoms. In the eleventh O2- site, O2- is bonded in a bent 120 degrees geometry to two B3+ atoms. In the twelfth O2- site, O2- is bonded in a distorted water-like geometry to one Ca2+ and two H1+ atoms. In the thirteenth O2- site, O2- is bonded in a distorted water-like geometry to one Ca2+ and two H1+ atoms. In the fourteenth O2- site, O2- is bonded in a trigonal planar geometry to three B3+ atoms.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1710105
Report Number(s):
mp-1198301
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on Li2MgB12(H4O7)4 by Materials Project
Dataset · Sat May 02 00:00:00 EDT 2020 · OSTI ID:1710105

Materials Data on SrB6(H4O7)2 by Materials Project
Dataset · Fri May 29 00:00:00 EDT 2020 · OSTI ID:1710105

Materials Data on Na2MgB12(H4O7)4 by Materials Project
Dataset · Sat Jan 12 00:00:00 EST 2019 · OSTI ID:1710105