Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Prediction and inhibition of molten carbonate fuel cell shorting by NiO cathode dissolution

Conference ·
OSTI ID:170410
A model of time until shorting begins due to NiO dissolution/precipitation in MCFC was developed on the assumption that electronic conduction in the cell would happen when the concentration of dispersed nickel particles exceeded a critical value at the anode/electrolyte interface. The equation for the estimation of time-to-short-beginning (TTS) was derived as: TTS{sup 0.5}/t = A + B/K{sub Ni} pCO{sub 2} (t: matrix thickness, K{sub Ni}: NiO solubility at pCO{sub 2} = 1 atm., and A, B: constant). Life tests under different conditions on several single cells proved the usability of this equation. For the purpose of retarding MCFC shorting, a cell with a low rate of NiO dissolution, with a LiFeO{sub 2} layer, an out-of-cell oxidized NiO cathode, and a Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} eutectic electrolyte was made. The life test results showed that the nickel dissolution rate in the cell was less than 1/5 slower than that in the ordinary cells with an in situ oxidized NiO cathode and high Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolyte.
OSTI ID:
170410
Report Number(s):
CONF-950729--
Country of Publication:
United States
Language:
English