skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tank waste remediation system functions and requirements document

Abstract

This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

Authors:
Publication Date:
Research Org.:
Hanford Site (HNF), Richland, WA
Sponsoring Org.:
USDOE Office of Environmental Restoration and Waste Management, Washington, DC (US)
OSTI Identifier:
16805
Report Number(s):
WHC-SD-WM-FRD-020 Rev 1
ON: DE98059003; BR: EW3120075; TRN: US0302886
DOE Contract Number:
AC06-96RL13200
Resource Type:
Technical Report
Resource Relation:
Other Information: Supercedes report DE98059003; PBD: 03 Oct 1996; PBD: 3 Oct 1996
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; ARCHITECTURE; FUNCTIONALS; LIFE CYCLE; TANKS; WASTES

Citation Formats

Carpenter, K.E. Tank waste remediation system functions and requirements document. United States: N. p., 1996. Web. doi:10.2172/16805.
Carpenter, K.E. Tank waste remediation system functions and requirements document. United States. doi:10.2172/16805.
Carpenter, K.E. 1996. "Tank waste remediation system functions and requirements document". United States. doi:10.2172/16805. https://www.osti.gov/servlets/purl/16805.
@article{osti_16805,
title = {Tank waste remediation system functions and requirements document},
author = {Carpenter, K.E},
abstractNote = {This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.},
doi = {10.2172/16805},
journal = {},
number = ,
volume = ,
place = {United States},
year = 1996,
month =
}

Technical Report:

Save / Share:
  • This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.
  • A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanfordmore » Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.« less
  • This document discusses the interface between the Tank Waste Remediation System (TWRS) and the Solid Waste Division (SWD).
  • this document provides the fiscal year (FY) 1995 recommended high-level waste melter system development and testing (D and T) requirements. The first phase of melter system testing (FY 1995) will focus on the feasibility of high-temperature operation of recommended high-level waste melter systems. These test requirements will be used to establish the basis for defining detailed testing work scope, cost, and schedules. This document includes a brief summary of the recommended technologies and technical issues associated with each technology. In addition, this document presents the key D and T activities and engineering evaluations to be performed for a particular technologymore » or general melter system support feature. The strategy for testing in Phase 1 (FY 1995) is to pursue testing of the recommended high-temperature technologies, namely the high-temperature, ceramic-lined, joule-heated melter, referred to as the HTCM, and the high-frequency, cold-wall, induction-heated melter, referred to as the cold-crucible melter (CCM). This document provides a detailed description of the FY 1995 D and T needs and requirements relative to each of the high-temperature technologies.« less
  • During calendar year 1996, Duke Engineering and Services Hanford, Inc. conducted a safety analysis in accordance with DOE-STD-3009-94 as part of the development of a Final Safety Analysis Report (TSAR) for the Tank Waste Remediation System (TWRS) at the DOE Hanford site. The scope of the safety analysis of TWRS primarily addressed 177 large underground liquid waste storage tanks and associated equipment for transferring waste to and from tanks. The waste in the tanks was generated by the nuclear production and processing facilities at Hanford. The challenge facing the safety analysis team was to efficiently analyze the system within themore » time and budget allotted to provide the necessary and sufficient information for accident selection, control identification, and justification on the acceptability of the level of safety of TWRS. It was clear from the start that a hazard and accident analysis for each of the 177 similar tanks and supporting equipment was not practical nor necessary. For example, many of the tanks were similar enough that the results of the analysis of one tank would apply to many tanks. This required the development and use of a tool called the ''Hazard Topography''. The use of the Hazard Topography assured that all tank operations and configurations were adequately assessed in the hazard analysis and that the results (e.g., hazard identification and control decisions) were appropriately applied to all tanks and associated systems. The TWRS Hazard Topography was a data base of all the TWRS facilities (e.g., tanks, diversion boxes, transfer lines, and related facilities) along with data on their configuration, material at risk (MAR), hazards, and known safety related phenomenological issues. Facilities were then classified into groups based on similar combinations of configuration, MAR, hazards and phenomena. A hazard evaluation was performed for a tank or facility in each group. The results of these evaluations, also contained in a data base, were then mapped back to all TWRS facilities and used to select candidate accidents for the SAR. The Hazard Topography and hazard evaluation results were then used to support the identification of controls that address all TWRS facilities.« less