Optical properties and radiative forcing of fractal-like tar ball aggregates from biomass burning
- Michigan Technological Univ., Houghton, MI (United States)
- Michigan Technological Univ., Houghton, MI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
- Michigan Technological Univ., Houghton, MI (United States); Univ. of Trento (Italy)
- DNV GL, Hovik (Norway)
- Michigan Technological Univ., Houghton, MI (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McGill Univ., Montreal, QC (Canada)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Tar balls are frequently found in slightly aged biomass burning plumes. They are spherical in shape, have diameters between ~100 and 300 nm, are amorphous and composed mostly of oxygen and carbon. Tar balls are light absorbing and considered to be a component of brown carbon. Tar balls have been typically reported and analyzed as individual spheres; however, in a recent study, we reported the presence of significant fractions of fractal-like aggregates made of several tar balls in fire plumes from different geographical locations. Aggregation affects the optical properties of particles; therefore, we use T-Matrix and Lorenz-Mie simulations to explore the effects of aggregation on the tar balls’ optical properties in the 350 – 1150 nm wavelength range. We also evaluate the effects of different refractive indices available from the literature, different monomer numbers, and monomer sizes, as these are key factors determining the aggregates optical properties. Furthermore, we estimate the simple forcing efficiency for low and high surface albedos. Aggregates have a single scattering albedo (SSA) higher than that of individual tar balls (ΔSSA550 nm up to 0.22). The hemispherical upscatter fraction of individual tar balls is more than 100% larger than for tar ball aggregates in many cases. The top of the atmosphere simple forcing efficiency over dark surfaces shows large variabilities with an increase up to ~53% for tar ball aggregates compared to individual tar balls. Overall, these results demonstrate that aggregation of tar balls can have a significant impact on their optical properties and radiative forcing.
- Research Organization:
- Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC). Biological and Environmental Research (BER); National Science Foundation (NSF); National Aeronautic and Space Administration (NASA)
- Grant/Contract Number:
- 89233218CNA000001; SC0006941; AC05-76RL01830; SC0010019
- OSTI ID:
- 1673368
- Alternate ID(s):
- OSTI ID: 1543294
 OSTI ID: 1636100
- Report Number(s):
- LA-UR--19-30141
- Journal Information:
- Journal of Quantitative Spectroscopy and Radiative Transfer, Journal Name: Journal of Quantitative Spectroscopy and Radiative Transfer Vol. 230; ISSN 0022-4073
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
| Modeling study of scattering and absorption properties of tar-ball aggregates 
 | journal | January 2019 | 
Similar Records
Fractal-like Tar Ball Aggregates from Wildfire Smoke
Optical Properties of Individual Tar Balls in the Free Troposphere
 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                