skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling and projecting implosion performance for the National Ignition Facility

Abstract

Steady progress is being made in inertial confinement fusion experiments at the National Ignition Facility (NIF). Nonetheless, substantial further progress is still needed to reach the ultimate goal of fusion ignition. Closing the remaining gap will require either improving the quality of current implosions, increasing the implosion scale (and correspondingly the energy delivered by NIF), or some combination of the two. But how much of an improvement in implosion quality or energy scale is required to reach ignition? To reliably answer this question, an accurate understanding of current and past experiments is first required. Previous modeling efforts of NIF implosions have shown the need to resolve a wide range of scales (from microns to millimeters) as well as a faithful representation of the genuinely three-dimensional (3D) character of the stagnation process. Modeling NIF implosions is further complicated by the many perturbation sources that have been found to influence integrated implosion performance: flux asymmetries from the surrounding hohlraum, engineering features such as support tents and fill tubes, surface defects and contaminants, and more recently the radiation shadow cast by the fill tube on the capsule. A model including all of these effects, and with adequate resolution, challenges current computing capabilities butmore » has recently become feasible on the largest computers. Here, we review the status of these multi-effect, 3D simulations of NIF implosions, their comparison to experimental data, and preliminary results on scaling these simulations to the threshold of ignition on NIF.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1671191
Report Number(s):
LLNL-JRNL-813845
Journal ID: ISSN 0029-5515; 1022069
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 59; Journal Issue: 3; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
inertial confinement fusion; national ignition facility; radiation hydrodynamics

Citation Formats

Clark, D. S., Weber, C. R., Kritcher, A. L., Milovich, J. L., Patel, P. K., Haan, S. W., Hammel, B. A., Koning, J. M., Marinak, M. M., Patel, M. V., Schroeder, C. R., Sepke, S. M., and Edwards, M. J. Modeling and projecting implosion performance for the National Ignition Facility. United States: N. p., 2018. Web. doi:10.1088/1741-4326/aabcf7.
Clark, D. S., Weber, C. R., Kritcher, A. L., Milovich, J. L., Patel, P. K., Haan, S. W., Hammel, B. A., Koning, J. M., Marinak, M. M., Patel, M. V., Schroeder, C. R., Sepke, S. M., & Edwards, M. J. Modeling and projecting implosion performance for the National Ignition Facility. United States. doi:10.1088/1741-4326/aabcf7.
Clark, D. S., Weber, C. R., Kritcher, A. L., Milovich, J. L., Patel, P. K., Haan, S. W., Hammel, B. A., Koning, J. M., Marinak, M. M., Patel, M. V., Schroeder, C. R., Sepke, S. M., and Edwards, M. J. Tue . "Modeling and projecting implosion performance for the National Ignition Facility". United States. doi:10.1088/1741-4326/aabcf7. https://www.osti.gov/servlets/purl/1671191.
@article{osti_1671191,
title = {Modeling and projecting implosion performance for the National Ignition Facility},
author = {Clark, D. S. and Weber, C. R. and Kritcher, A. L. and Milovich, J. L. and Patel, P. K. and Haan, S. W. and Hammel, B. A. and Koning, J. M. and Marinak, M. M. and Patel, M. V. and Schroeder, C. R. and Sepke, S. M. and Edwards, M. J.},
abstractNote = {Steady progress is being made in inertial confinement fusion experiments at the National Ignition Facility (NIF). Nonetheless, substantial further progress is still needed to reach the ultimate goal of fusion ignition. Closing the remaining gap will require either improving the quality of current implosions, increasing the implosion scale (and correspondingly the energy delivered by NIF), or some combination of the two. But how much of an improvement in implosion quality or energy scale is required to reach ignition? To reliably answer this question, an accurate understanding of current and past experiments is first required. Previous modeling efforts of NIF implosions have shown the need to resolve a wide range of scales (from microns to millimeters) as well as a faithful representation of the genuinely three-dimensional (3D) character of the stagnation process. Modeling NIF implosions is further complicated by the many perturbation sources that have been found to influence integrated implosion performance: flux asymmetries from the surrounding hohlraum, engineering features such as support tents and fill tubes, surface defects and contaminants, and more recently the radiation shadow cast by the fill tube on the capsule. A model including all of these effects, and with adequate resolution, challenges current computing capabilities but has recently become feasible on the largest computers. Here, we review the status of these multi-effect, 3D simulations of NIF implosions, their comparison to experimental data, and preliminary results on scaling these simulations to the threshold of ignition on NIF.},
doi = {10.1088/1741-4326/aabcf7},
journal = {Nuclear Fusion},
issn = {0029-5515},
number = 3,
volume = 59,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
journal, May 2014


The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling
journal, May 2018

  • Casey, D. T.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5019741

First beryllium capsule implosions on the National Ignition Facility
journal, May 2016

  • Kline, J. L.; Yi, S. A.; Simakov, A. N.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948277

Robustness studies of ignition targets for the National Ignition Facility in two dimensions
journal, May 2008

  • Clark, Daniel S.; Haan, Steven W.; Salmonson, Jay D.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2890123

3D Surface Reconstruction of ICF Shells after Full Surface Spheremapping
journal, May 2006

  • Huang, H.; Stephens, R. B.; Gibson, J. B.
  • Fusion Science and Technology, Vol. 49, Issue 4
  • DOI: 10.13182/FST49-642

The effects of fill tubes on the hydrodynamics of ignition targets and prospects for ignition
journal, May 2005

  • Edwards, John; Marinak, Marty; Dittrich, Tom
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1914809

Laser-direct-drive program: Promise, challenge, and path forward
journal, March 2017

  • Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.
  • Matter and Radiation at Extremes, Vol. 2, Issue 2
  • DOI: 10.1016/j.mre.2017.03.001

Capsule modeling of high foot implosion experiments on the National Ignition Facility
journal, March 2017

  • Clark, D. S.; Kritcher, A. L.; Milovich, J. L.
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 5
  • DOI: 10.1088/1361-6587/aa6216

Improving ICF implosion performance with alternative capsule supports
journal, May 2017

  • Weber, C. R.; Casey, D. T.; Clark, D. S.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977536

High-mode Rayleigh-Taylor growth in NIF ignition capsules
journal, June 2010


The high-foot implosion campaign on the National Ignition Facility
journal, May 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874330

Description of the NIF Laser
journal, February 2016

  • Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.
  • Fusion Science and Technology, Vol. 69, Issue 1
  • DOI: 10.13182/FST15-144

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility
journal, May 2013

  • Clark, D. S.; Hinkel, D. E.; Eder, D. C.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4802194

XLVI. Hydrokinetic solutions and observations
journal, November 1871

  • Thomson, William
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 42, Issue 281
  • DOI: 10.1080/14786447108640585

Higher velocity, high-foot implosions on the National Ignition Facility lasera)
journal, May 2015

  • Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921144

Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators
journal, May 2018

  • Kritcher, A. L.; Clark, D.; Haan, S.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5018000

Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility
journal, November 2016


The Role of Magnetized Liner Inertial Fusion as a Pathway to Fusion Energy
journal, November 2015


Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions
journal, May 2016


Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

Integrated modeling of cryogenic layered highfoot experiments at the NIF
journal, May 2016

  • Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4949351

Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility
journal, May 2014

  • Nora, R.; Betti, R.; Anderson, K. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875331

High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
journal, February 2014


Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators
journal, March 2018

  • Clark, D. S.; Kritcher, A. L.; Yi, S. A.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5016874

Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility
journal, May 2014

  • Town, R. P. J.; Bradley, D. K.; Kritcher, A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876609

Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign
journal, February 2015

  • Clark, D. S.; Marinak, M. M.; Weber, C. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4906897

Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity
journal, May 2017

  • Divol, L.; Pak, A.; Berzak Hopkins, L. F.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982215

Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, April 2015


Density-functional calculations of transport properties in the nondegenerate limit and the role of electron-electron scattering
journal, March 2017

  • Desjarlais, Michael P.; Scullard, Christian R.; Benedict, Lorin X.
  • Physical Review E, Vol. 95, Issue 3
  • DOI: 10.1103/PhysRevE.95.033203

Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive
journal, September 2015


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube
journal, March 2017