skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fusion excitation functions involving transitional nuclei

Technical Report ·
DOI:https://doi.org/10.2172/166294· OSTI ID:166294

Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
OSTI ID:
166294
Report Number(s):
ANL-95/14; ON: DE96000985; TRN: 95:007970-0006
Resource Relation:
Other Information: PBD: Aug 1995; Related Information: Is Part Of Physics Division Annual Report, April 1, 1994--March 31, 1995; Henning, W.F.; PB: 207 p.
Country of Publication:
United States
Language:
English