Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Investigation of laser direct energy deposition for production of ODS alloys

Technical Report ·
DOI:https://doi.org/10.2172/1658016· OSTI ID:1658016
Laser blown powder additive manufacturing (AM) was performed to evaluate the feasibility of using the technique to fabricate oxide dispersion strengthened (ODS) alloys. The idea was to utilize an in-situ oxidation reaction to oxidize reactive elements to generate a refined dispersion of the dispersoids with a uniform size distribution. Builds were fabricated using Y added 316L in a reactive atmosphere and an inert atmosphere for comparisons. Detailed characterization was performed to understand the as-fabricated microstructure. Detailed characterization and chemical analysis show that there is significant Y loss during deposition. The loss in Y during processing leads to a reduced volume fraction of precipitates (~2 x 1018/m3) with an average size of ~97 nm. Mechanical testing of the samples fabricated in both air and in inert atmosphere were performed at RT, 200 °C, 400 °C and 600 °C. The mechanical properties were then compared with austenitic ODS alloys that were reported in the literature. The results show that while the ultimate tensile strengths were comparable with wrought ODS alloys, the deterioration in yield strength with temperature was more severe in the case of the AM fabricated ODS material. However, the ductility was observed to be higher than all wrought 316L ODS alloys. Future efforts will focus on increasing the percentage of Y in the pre-alloyed powder to refine the dispersoids. In addition, a close control of process parameters and post processing treatments need to be explored to optimize the dispersoids volume fraction.
Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1658016
Report Number(s):
ORNL/SPR-2018/983
Country of Publication:
United States
Language:
English

Similar Records

Mechanical Characteristics of Additively Manufactured ODS 316L and 316H Alloys with and Without Post-build Processing
Journal Article · Sun Apr 06 20:00:00 EDT 2025 · JOM. Journal of the Minerals, Metals & Materials Society · OSTI ID:3002866

Microstructure Optimization and Novel Processing Development of ODS Steels for Fusion Environments (Final ARPA-E Report)
Technical Report · Mon Sep 30 00:00:00 EDT 2024 · OSTI ID:3000256

Mechanical Performance of Additively Manufactured ODS 316L and 316H Stainless Steels
Technical Report · Sun Sep 01 00:00:00 EDT 2024 · OSTI ID:2441053