Microstate counting via Bethe Ansätze in the 4d $$ \mathcal{N} $$ = 1 superconformal index
- SISSA International School for Advanced Studies, Triste (Italy); INFN, sezione di Trieste (Italy); Universidad de Pinar del Rio (Cuba); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); University of Michigan, Ann Arbor M
- The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); University of Michigan, Ann Arbor, MI (United States)
We study the superconfomal index of four-dimensional toric quiver gauge theories using a Bethe Ansatz approach recently applied by Benini and Milan. Relying on a particular set of solutions to the corresponding Bethe Ansatz equations we evaluate the superconformal index in the large N limit, thus avoiding to take any Cardy-like limit. We present explicit results for theories arising as a stack of N D3 branes at the tip of toric Calabi-Yau cones: the conifold theory, the suspended pinch point gauge theory, the first del Pezzo theory and Yp,q quiver gauge theories. For a suitable choice of the chemical potentials of the theory we find agreement with predictions made for the same theories in the Cardy-like limit. However, for other regions of the domain of chemical potentials the superconformal index is modified and consequently the associated black hole entropy receives corrections. We work out explicitly the simple case of the conifold theory.
- Research Organization:
- University of Michigan, Ann Arbor, MI (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), High Energy Physics (HEP)
- Grant/Contract Number:
- SC0007859
- OSTI ID:
- 1656799
- Journal Information:
- Journal of High Energy Physics (Online), Journal Name: Journal of High Energy Physics (Online) Journal Issue: 3 Vol. 2020; ISSN 1029-8479
- Publisher:
- Springer BerlinCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Superpotentials for Quiver Gauge Theories