Materials Data on Al3P3H8C2NO13 by Materials Project
Al3P3O13(CH3)2NH2 crystallizes in the orthorhombic Pbca space group. The structure is three-dimensional and consists of eight dimethylazanium molecules and one Al3P3O13 framework. In the Al3P3O13 framework, there are three inequivalent Al3+ sites. In the first Al3+ site, Al3+ is bonded to five O2- atoms to form AlO5 trigonal bipyramids that share corners with four PO4 tetrahedra and a cornercorner with one AlO5 trigonal bipyramid. There are a spread of Al–O bond distances ranging from 1.79–1.88 Å. In the second Al3+ site, Al3+ is bonded to five O2- atoms to form AlO5 trigonal bipyramids that share corners with four PO4 tetrahedra and a cornercorner with one AlO5 trigonal bipyramid. There are a spread of Al–O bond distances ranging from 1.81–1.91 Å. In the third Al3+ site, Al3+ is bonded to four O2- atoms to form AlO4 tetrahedra that share corners with four PO4 tetrahedra. There are a spread of Al–O bond distances ranging from 1.75–1.78 Å. There are three inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one AlO4 tetrahedra and corners with three AlO5 trigonal bipyramids. There is one shorter (1.53 Å) and three longer (1.55 Å) P–O bond length. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two equivalent AlO4 tetrahedra and corners with two AlO5 trigonal bipyramids. There are a spread of P–O bond distances ranging from 1.53–1.55 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share a cornercorner with one AlO4 tetrahedra and corners with three AlO5 trigonal bipyramids. There are a spread of P–O bond distances ranging from 1.53–1.56 Å. There are thirteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to two Al3+ atoms. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Al3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 120 degrees geometry to one Al3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Al3+ and one P5+ atom.
- Research Organization:
- LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- Contributing Organization:
- The Materials Project; MIT; UC Berkeley; Duke; U Louvain
- DOE Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1654891
- Report Number(s):
- mp-1204696
- Country of Publication:
- United States
- Language:
- English
Similar Records
Materials Data on Al3P3HC4NO13 by Materials Project
Materials Data on Al3P3H9C2NO13 by Materials Project
Materials Data on Al3P3H7CNO13 by Materials Project
Dataset
·
Fri Jan 11 23:00:00 EST 2019
·
OSTI ID:1728762
Materials Data on Al3P3H9C2NO13 by Materials Project
Dataset
·
Wed Apr 29 00:00:00 EDT 2020
·
OSTI ID:1301538
Materials Data on Al3P3H7CNO13 by Materials Project
Dataset
·
Fri Jan 11 23:00:00 EST 2019
·
OSTI ID:1736894