skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomic-Scale Structural Mapping of Active Sites in Monolayer PGM-Free Catalysts by Low-Voltage 4D-STEM

Conference ·

Two-dimensional (2D) materials have attracted a large amount of attention in both basic and applied fields, and scanning transmission electron microscopy (STEM) is often uniquely well-suited for characterizing the atomic-scale structure of these materials [1-4]. As a result, STEM is poised to significantly impact progress on platinum group metal (PGM)-free catalysts, which are currently under intense development to enable low-cost, commercially viable hydrogen fuel cells [5]. While recent advancements have resulted in fuel cell performance comparable to Pt catalysts by some measures [6], cell durability remains a significant challenge, limiting practical applications [7]. Catalytically active sites in PGM-free materials are proposed to be FeN4 complexes embedded in a graphene lattice (Fig. 1b) within layered or other larger materials, but this is still under debate largely due to the range of potential actives sites predicted by computational methods and lack of methods for directly validating these models [5]. Fundamental insights into the atomic structure and resulting degradation pathways of proposed active sites are therefore needed to fully understand and control cell performance and durability [6].2D materials typically make ideal samples for STEM, but those within PGM-free catalysts present additional challenges since these materials are often defect-rich, with a high density of edges, dopant atoms, etc., which significantly increase susceptibility to beam damage at standard operating voltages. This makes analysis of potential FeN4 active sites particularly challenging, since a large proportion of Fe exists at edge sites where beam-induced atomic displacements can prohibit high-resolution structural characterization [6]. Conventional dark-field imaging compounds this problem by producing less signal for a given dose and being less sensitive to light elements than dose-efficient phase contrast imaging techniques such as those enabled by four-dimensional (4D)-STEM [8-10] (Fig. 1a). Consequently, active site structural analysis is often left to methods such as low-resolution imaging combined with quantum chemical calculations [6], which hinders accurate determination of reaction and degradation mechanisms.Here, we demonstrate direct atomic-scale structural mapping of FeN4 sites by performing low-voltage 4D-STEM on a model PGM-free catalyst system with many exposed monolayer regions. To accomplish this, we pair a 30 keV aberration-corrected probe with a fast pixelated detector that has optimal performance at low beam voltages [11]. This enables us to simultaneously image light and heavy elements with high signal-to-noise by center-of-mass analysis (Fig. 1c) while minimizing beam-induced atomic displacements at sensitive sites. The monolayer nature of these materials additionally allows for experimental validation by direct comparison with multislice simulations [12] of model structures (Fig. 1d-e). This work demonstrates how low-voltage 4D-STEM will provide new insights into the atomic-scale structure and degradation mechanisms of active sites in PGM-free catalysts, facilitating the development of low-cost hydrogen fuel cells and other energy conversion technologies in the future [13].

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1651345
Resource Relation:
Conference: Microscopy and Microanalysis 2020 - Milwaukee, Wisconsin, United States of America - 8/2/2020 4:00:00 AM-8/6/2020 4:00:00 AM
Country of Publication:
United States
Language:
English

Similar Records

Atomic-scale Imaging of PGM-free Catalyst Active Sites by 30 keV 4D-STEM
Conference · Thu Jul 01 00:00:00 EDT 2021 · OSTI ID:1651345

Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation
Journal Article · Tue Sep 26 00:00:00 EDT 2017 · Journal of the American Chemical Society · OSTI ID:1651345

Highly Robust Low-PGM MEAs Based upon Composite Supports _ Final Report
Technical Report · Tue Nov 12 00:00:00 EST 2019 · OSTI ID:1651345

Related Subjects