Harvest Intensity Effects on Carbon Stocks and Biodiversity Are Dependent on Regional Climate in Douglas-Fir Forests of British Columbia
Journal Article
·
· Frontiers in Forests and Global Change
- University of British Columbia, Vancouver, BC (Canada)
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- University of Reading (United Kingdom)
Temperate forests provide crucial ecosystems services as living sinks for atmospheric carbon (C) and repositories of biodiversity. Applying harvesting at intensities that minimize losses offers one means for mitigating global change. However, little is known of overstory retention levels that best conserve ecosystem services in different regional climates, and likewise as climate changes. To quantify the effect of harvest intensity on C stocks and biodiversity, we compared five harvesting intensities (clearcutting, seedtree retention, 30% patch retention, 60% patch retention, and uncut controls) across a climatic aridity gradient that ranged from humid to semi-arid in the Douglas-fir (Pseudotsuga menziesii) forests of British Columbia. We found that increased harvesting intensity reduced total ecosystem, above ground, and live tree C stocks 1 year post-harvest, and the magnitude of these losses were negatively correlated with climatic aridity. In humid forests, total ecosystem C ranged from 50% loss following clearcut harvest, to 30% loss following large patch retention harvest. In arid forests this range was 60 to 8% loss, respectively. Where lower retention harvests are sought, the small patch retention treatment protected both C stocks and biodiversity in the arid forests, whereas the seedtree method performed as well or better in the humid forests. Below ground C stocks declined by an average of 29% after harvesting, with almost all of the loss from the forest floor and none from the mineral soil. Of the secondary pools, standing and coarse deadwood declined in all harvesting treatments regardless of cutting intensity or aridity, while C stocks in fine fuels and stumps increased. The understory plant C pool declined across all harvesting intensities in the humid forests, but increased in arid forests. Shannon’s diversity and richness of tree and bryoid species declined with harvesting intensity, where tree species losses were greatest in the humid forests and bryoid losses greatest in arid forests. Shrub and herb species were unaffected. This study showed that the highest retention level was best at reducing losses in C stocks and biodiversity, and clearcutting the poorest, and while partial retention of canopy trees can reduce losses in these ecosystem services, outcomes will vary with climatic aridity.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Biological and Environmental Research (BER)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1649213
- Journal Information:
- Frontiers in Forests and Global Change, Journal Name: Frontiers in Forests and Global Change Journal Issue: 88 Vol. 3; ISSN 2624-893X
- Publisher:
- Frontiers Media S.A.Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Tree Diversity, Site Index, and Carbon Storage Decrease With Aridity in Douglas-Fir Forests in Western Canada
Interactions Between Climate and Species Drive Future Forest Carbon and Water Balances
Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest
Journal Article
·
Tue Jun 22 20:00:00 EDT 2021
· Frontiers in Forests and Global Change
·
OSTI ID:1807311
Interactions Between Climate and Species Drive Future Forest Carbon and Water Balances
Journal Article
·
Tue Dec 03 19:00:00 EST 2024
· Ecohydrology
·
OSTI ID:2570789
Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest
Journal Article
·
Wed Nov 04 19:00:00 EST 2020
· Frontiers in Forests and Global Change
·
OSTI ID:1851602