skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of fracture roughness on shear strength, slip stability and permeability: A mechanistic analysis by three-dimensional digital rock modeling

Journal Article · · Journal of Rock Mechanics and Geotechnical Engineering

Subsurface fluid injections can disturb the effective stress regime by elevating pore pressure and potentially reactivate faults and fractures. Laboratory studies indicate that fracture rheology and permeability in such reactivation events are linked to the roughness of the fracture surfaces. In this study, we construct numerical models using discrete element method (DEM) to explore the influence of fracture surface roughness on the shear strength, slip stability, and permeability evolution during such slip events. For each simulation, a pair of analog rock coupons (three-dimensional bonded quartz particle analogs) representing a mated fracture is sheared under a velocity-stepping scheme. The roughness of the fracture is defined in terms of asperity height and asperity wavelength. Results show that (1) Samples with larger asperity heights (rougher), when sheared, exhibit a higher peak strength which quickly devolves to a residual strength after reaching a threshold shear displacement; (2) These rougher samples also exhibit greater slip stability due to a high degree of asperity wear and resultant production of wear products; (3) Long-term suppression of permeability is observed with rougher fractures, possibly due to the removal of asperities and redistribution of wear products, which locally reduces porosity in the dilating fracture; and (4) Increasing shear-parallel asperity wavelength reduces magnitudes of stress drops after peak strength and enhances fracture permeability, while increasing shear-perpendicular asperity wavelength results in sequential stress drops and a delay in permeability enhancement. This study provides insights into understanding of the mechanisms of frictional and rheological evolution of rough fractures anticipated during reactivation events.

Research Organization:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Organization:
USDOE Office of Fossil Energy (FE)
Grant/Contract Number:
FE0023354
OSTI ID:
1635434
Alternate ID(s):
OSTI ID: 1799771
Journal Information:
Journal of Rock Mechanics and Geotechnical Engineering, Journal Name: Journal of Rock Mechanics and Geotechnical Engineering Vol. 12 Journal Issue: 4; ISSN 1674-7755
Publisher:
ElsevierCopyright Statement
Country of Publication:
China
Language:
English

Similar Records

MINERALOGICAL AND TEXTURAL CONTROLS ON SHEAR STRENGTH, SLIP STABILITY AND PERMEABILITY OF FAULTS
Other · Wed May 15 00:00:00 EDT 2019 · OSTI ID:1635434

Permeability Evolution and Frictional Stability of Fabricated Fractures With Specified Roughness
Journal Article · Thu Oct 04 00:00:00 EDT 2018 · Journal of Geophysical Research. Solid Earth · OSTI ID:1635434

Injection‐Induced Shear Slip and Permeability Enhancement in Granite Fractures
Journal Article · Tue Oct 30 00:00:00 EDT 2018 · Journal of Geophysical Research. Solid Earth · OSTI ID:1635434