Revisiting the t0.5 Dependence of SEI Growth
Journal Article
·
· Journal of the Electrochemical Society (Online)
- Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
- Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
SEI growth in lithium-ion batteries is commonly assumed to scale with t0.5, in line with simple models of diffusion-limited surface layer growth. As a result, this model is widely used for empirical predictions of capacity fade in lithium-ion batteries. However, the t0.5 model is generally not theoretically sufficient to describe all of the various SEI growth modes. Furthermore, previous literature has not convincingly demonstrated that this model provides the best fit to measurements of SEI growth. In this work, we discuss the theoretical assumptions of the t0.5 model, evaluate claims of t0.5 dependence in six previously published datasets and one new dataset, and compare the performance of this model to that of other models. We find that few of the purported t0.5 fits in literature are statistically justified, although t0.5 generally describes SEI growth during storage better than SEI growth during cycling. Finally, we evaluate how the fitted exponents in the power-law models vary as a function of time, and we illustrate the limitations of using t0.5 for prediction without validating its applicability to a particular dataset. This work illustrates the theoretical and empirical limitations of the t0.5 model and highlights alternatives for more accurate estimates and predictions of SEI growth.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- National Science Foundation (NSF); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
- Grant/Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1635182
- Journal Information:
- Journal of the Electrochemical Society (Online), Journal Name: Journal of the Electrochemical Society (Online) Journal Issue: 9 Vol. 167; ISSN 1945-7111
- Publisher:
- IOP PublishingCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
The Importance of a Moving Boundary Approach for Modeling the SEI Layer Growth to Predict Capacity Fade
Journal Article
·
Sun Apr 24 20:00:00 EDT 2022
· Journal of the Electrochemical Society
·
OSTI ID:2325347