skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil–Water Interface

Journal Article · · Langmuir
ORCiD logo [1];  [2]; ORCiD logo [3];  [3];  [4];  [5]; ORCiD logo [4];  [2]; ORCiD logo [2];  [3]; ORCiD logo [6]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Stanford Univ., CA (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beijing Univ. of Chemical Technology (China)
  6. Beijing Univ. of Chemical Technology (China); Univ. of Massachusetts, Amherst, MA (United States); Tohoku Univ., Aoba (Japan); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

The effect of polymer surfactant structure and concentration on the self-assembly, mechanical properties, and solidification of nanoparticle surfactants (NPSs) at the oil-water interface was studied. The surface tension of the oil-water interface was found to depend strongly on the choice of the polymer surfactant used to assemble the NPSs, with polymer surfactants bearing multiple polar groups being the most effective at reducing interfacial tension and driving the NPS assembly. By contrast, only small variations in the shear modulus of the system were observed, suggesting that it is determined largely by particle density. In the presence of polymer surfactants bearing multiple functional groups, NPS assemblies on pendant drop surfaces were observed to spontaneously solidify above a critical polymer surfactant concentration. Interfacial solidification accelerated rapidly as polymer surfactant concentration was increased. On long timescales after solidification, pendant drop interfaces were observed to spontaneously wrinkle at sufficiently low surface tensions (approximately 5 mN m-1). Interfacial shear rheology of the NPS assemblies was elastic-dominated, with the shear modulus ranging from 0.1 to 1 N m-1, comparable to values obtained for nanoparticle monolayers elsewhere. Finally, our work paves the way for the development of designer, multicomponent oil-water interfaces with well-defined mechanical, structural, and functional properties.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Grant/Contract Number:
AC02-05CH11231
OSTI ID:
1634053
Journal Information:
Langmuir, Vol. 35, Issue 41; ISSN 0743-7463
Publisher:
American Chemical SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Similar Records

The Buckling Spectra of Nanoparticle Surfactant Assemblies
Journal Article · Fri Aug 27 00:00:00 EDT 2021 · Nano Letters · OSTI ID:1634053

Mixed Nanosphere Assemblies at a Liquid–Liquid Interface
Journal Article · Wed Nov 22 00:00:00 EST 2023 · Small · OSTI ID:1634053

Fine-Tuning Nanoparticle Packing at Water–Oil Interfaces Using Ionic Strength
Journal Article · Wed Sep 13 00:00:00 EDT 2017 · Nano Letters · OSTI ID:1634053