Study of Morphological Changes in MgH2 Destabilized LiBH4 Systems Using Computed X-ray Microtomography
- Rowan Univ., Glassboro, NJ (United States). Dept. of Physics and Astronomy; DOE/OSTI
- Louisiana Tech Univ., Ruston, LA (United States). Inst. for Micromanufacturing. Dept. of Chemical Engineering
- Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Chemistry
The objective of this study was to apply three-dimensional x-ray microtomographic imaging to understanding morphologies in the diphasic destabilized hydride system: MgH2 and LiBH4. Each of the single phase hydrides as well as two-phase mixtures at LiBH4:MgH2 ratios of 1:3, 1:1, and 2:1 were prepared by high energy ball milling for 5 minutes (with and without 4 mol % TiCl3 catalyst additions). Samples were imaged using computed microtomography in order to (i) establish measurement conditions leading to maximum absorption contrast between the two phases and (ii) determine interfacial volume. The optimal energy for measurement was determined to be 15 keV (having 18% transmission for the MgH2 phase and above 90% transmission for the LiBH4 phase). This work also focused on the determination of interfacial volume. Results showed that interfacial volume for each of the single phase systems, LiBH4 and MgH2, did not change much with catalysis using 4 mol % TiCl3. However, for the mixed composite system, interphase boundary volume was always higher in the catalyzed system; increasing from 15% to 33% in the 1:3 system, from 11% to 20% in the 1:1 system, and 2% to 14% in the 2:1 system. The parameters studied are expected to govern mass transport (i.e., diffusion) and ultimately lead to microstructure-based improvements on H2 desorption and uptake rates.
- Research Organization:
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1628435
- Journal Information:
- Materials, Journal Name: Materials Journal Issue: 10 Vol. 5; ISSN 1996-1944; ISSN MATEG9
- Publisher:
- MDPICopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Solid-State Hydriding Mechanism in the LiBH4 + MgH2 System
Reaction Mechanisms in the Li3AlH6/LiBH4 and Al/LiBH4 Systems for Reversible Hydrogen Storage. Part 1: H capacity and Role of Al
IImprove hydrogen sorption kinetics of MgH2 by doping carbon-encapsulated iron-nickel nanoparticles
Journal Article
·
Thu May 06 00:00:00 EDT 2010
· Journal of Physical Chemistry C, 114(17):8089-8098
·
OSTI ID:979846
Reaction Mechanisms in the Li3AlH6/LiBH4 and Al/LiBH4 Systems for Reversible Hydrogen Storage. Part 1: H capacity and Role of Al
Journal Article
·
Thu Apr 07 00:00:00 EDT 2011
· Journal of Physical Chemistry C, 115(13):6040-6047
·
OSTI ID:1026586
IImprove hydrogen sorption kinetics of MgH2 by doping carbon-encapsulated iron-nickel nanoparticles
Journal Article
·
Sun Nov 29 23:00:00 EST 2020
· Journal of Alloys and Compounds
·
OSTI ID:1668617