skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds

Abstract

The cyclopentadienyl molybdenum hydride compounds, Cp RMo(PMe 3) 3-x(CO) xH (Cp R = Cp, Cp*; x = 0, 1, 2 or 3), are catalysts for the dehydrogenation of formic acid, with the most active catalysts having the composition Cp RMo(PMe 3) 2(CO)H. The mechanism of the catalytic cycle is proposed to involve (i) protonation of the molybdenum hydride complex, (ii) elimination of H 2 and coordination of formate, and (iii) decarboxylation of the formate ligand to regenerate the hydride species. NMR spectroscopy indicates that the nature of the resting state depends on the composition of the catalyst. For example, (i) the resting states for the CpMo(CO) 3H and CpMo(PMe 3)(CO) 2H systems are the hydride complexes themselves, (ii) the resting state for the CpMo(PMe 3) 3H system is the protonated species [CpMo(PMe 3) 3H 2] +, and (iii) the resting state for the CpMo(PMe 3) 2(CO)H system is the formate complex, CpMo(PMe 3) 2(CO)(κ 1-O 2CH), in the presence of a high concentration of formic acid, but CpMo(PMe 3) 2(CO)H when the concentration of acid is low. While CO 2 and H 2 are the principal products of the catalytic reaction induced by Cp RMo(PMe 3) 3-x(CO) xH, methanol andmore » methyl formate are also observed. The generation of methanol is a consequence of disproportionation of formic acid, while methyl formate is a product of subsequent esterification. The disproportionation of formic acid is a manifestation of a transfer hydrogenation reaction, which may also be applied to the reduction of aldehydes and ketones. Thus, CpMo(CO) 3H also catalyzes the reduction of a variety of ketones and aldehydes to alcohols by formic acid, via a mechanism that involves ionic hydrogenation.« less

Authors:
 [1];  [1]
  1. Columbia Univ., New York, NY (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Columbia Univ., New York, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1624914
Grant/Contract Number:  
FG02-93ER14339; DGE 11-44155
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Chemical Science
Additional Journal Information:
Journal Volume: 6; Journal Issue: 3; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Neary, Michelle C., and Parkin, Gerard. Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds. United States: N. p., 2015. Web. doi:10.1039/c4sc03128h.
Neary, Michelle C., & Parkin, Gerard. Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds. United States. doi:10.1039/c4sc03128h.
Neary, Michelle C., and Parkin, Gerard. Wed . "Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds". United States. doi:10.1039/c4sc03128h. https://www.osti.gov/servlets/purl/1624914.
@article{osti_1624914,
title = {Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds},
author = {Neary, Michelle C. and Parkin, Gerard},
abstractNote = {The cyclopentadienyl molybdenum hydride compounds, CpRMo(PMe3)3-x(CO)xH (CpR = Cp, Cp*; x = 0, 1, 2 or 3), are catalysts for the dehydrogenation of formic acid, with the most active catalysts having the composition CpRMo(PMe3)2(CO)H. The mechanism of the catalytic cycle is proposed to involve (i) protonation of the molybdenum hydride complex, (ii) elimination of H2 and coordination of formate, and (iii) decarboxylation of the formate ligand to regenerate the hydride species. NMR spectroscopy indicates that the nature of the resting state depends on the composition of the catalyst. For example, (i) the resting states for the CpMo(CO)3H and CpMo(PMe3)(CO)2H systems are the hydride complexes themselves, (ii) the resting state for the CpMo(PMe3)3H system is the protonated species [CpMo(PMe3)3H2]+, and (iii) the resting state for the CpMo(PMe3)2(CO)H system is the formate complex, CpMo(PMe3)2(CO)(κ1-O2CH), in the presence of a high concentration of formic acid, but CpMo(PMe3)2(CO)H when the concentration of acid is low. While CO2 and H2 are the principal products of the catalytic reaction induced by CpRMo(PMe3)3-x(CO)xH, methanol and methyl formate are also observed. The generation of methanol is a consequence of disproportionation of formic acid, while methyl formate is a product of subsequent esterification. The disproportionation of formic acid is a manifestation of a transfer hydrogenation reaction, which may also be applied to the reduction of aldehydes and ketones. Thus, CpMo(CO)3H also catalyzes the reduction of a variety of ketones and aldehydes to alcohols by formic acid, via a mechanism that involves ionic hydrogenation.},
doi = {10.1039/c4sc03128h},
journal = {Chemical Science},
issn = {2041-6520},
number = 3,
volume = 6,
place = {United States},
year = {2015},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Review of solutions to global warming, air pollution, and energy security
journal, January 2009


Formic acid as a hydrogen source – recent developments and future trends
journal, January 2012

  • Grasemann, Martin; Laurenczy, Gábor
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21928j

Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?
journal, January 2010

  • Enthaler, Stephan; von Langermann, Jan; Schmidt, Thomas
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/b907569k

Carbon Dioxide-The Hydrogen-Storage Material of the Future?
journal, October 2008


The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements
journal, February 2007


Hydrogen-storage materials for mobile applications
journal, November 2001

  • Schlapbach, Louis; Züttel, Andreas
  • Nature, Vol. 414, Issue 6861
  • DOI: 10.1038/35104634

Chemical and Physical Solutions for Hydrogen Storage
journal, August 2009

  • Eberle, Ulrich; Felderhoff, Michael; Schüth, Ferdi
  • Angewandte Chemie International Edition, Vol. 48, Issue 36
  • DOI: 10.1002/anie.200806293

Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials
journal, May 2010


Hydrogen Storage and Delivery: The Carbon Dioxide – Formic Acid Couple
journal, September 2011


Synthesis Gas as a Source of Fuels and Chemicals: C-1 Chemistry
journal, November 1986


Biomass Conversion in Water at 330−410 °C and 30−50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways
journal, January 2003

  • Kruse, A.; Gawlik, A.
  • Industrial & Engineering Chemistry Research, Vol. 42, Issue 2
  • DOI: 10.1021/ie0202773

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain
journal, August 2011

  • Peters, Martina; Köhler, Burkhard; Kuckshinrichs, Wilhelm
  • ChemSusChem, Vol. 4, Issue 9
  • DOI: 10.1002/cssc.201000447

Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling
journal, July 2013

  • He, Mingyuan; Sun, Yuhan; Han, Buxing
  • Angewandte Chemie International Edition, Vol. 52, Issue 37
  • DOI: 10.1002/anie.201209384

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Heterogeneous Catalytic Generation of Hydrogen from Formic Acid under Pressurized Aqueous Conditions
journal, March 2012

  • Ting, Siu-Wa; Hu, Chaoquan; Pulleri, Jayasree K.
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 13
  • DOI: 10.1021/ie2030079

Reversible CO 2 binding triggered by metal–ligand cooperation in a rhenium( i ) PNP pincer-type complex and the reaction with dihydrogen
journal, January 2014

  • Vogt, Matthias; Nerush, Alexander; Diskin-Posner, Yael
  • Chem. Sci., Vol. 5, Issue 5
  • DOI: 10.1039/C4SC00130C

An efficient binuclear catalyst for decomposition of formic acid
journal, January 1998

  • Gao, Yuan; Kuncheria, Joshi; Puddephatt, Richard J.
  • Chemical Communications, Issue 21
  • DOI: 10.1039/a805789c

Hydrogen Generation at Ambient Conditions: Application in Fuel Cells
journal, September 2008


Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study
journal, February 2009

  • Fellay, Céline; Yan, Ning; Dyson, Paul J.
  • Chemistry - A European Journal, Vol. 15, Issue 15
  • DOI: 10.1002/chem.200801824

Efficient Disproportionation of Formic Acid to Methanol Using Molecular Ruthenium Catalysts
journal, August 2014

  • Savourey, Solène; Lefèvre, Guillaume; Berthet, Jean-Claude
  • Angewandte Chemie International Edition, Vol. 53, Issue 39
  • DOI: 10.1002/anie.201405457

Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H 2 and H/D Exchange with a Water-Soluble Rhodium Complex in Aqueous Solution
journal, October 2008

  • Fukuzumi, Shunichi; Kobayashi, Takeshi; Suenobu, Tomoyoshi
  • ChemSusChem, Vol. 1, Issue 10
  • DOI: 10.1002/cssc.200800147

Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure
journal, January 2012

  • Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi
  • Energy & Environmental Science, Vol. 5, Issue 6
  • DOI: 10.1039/c2ee03315a

Catalytic Disproportionation of Formic Acid to Generate Methanol
journal, February 2013

  • Miller, Alexander J. M.; Heinekey, D. Michael; Mayer, James M.
  • Angewandte Chemie International Edition, Vol. 52, Issue 14
  • DOI: 10.1002/anie.201208470

Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

The Isolation of [Pd{OC(O)H}(H)(NHC)(PR 3 )] (NHC = N-Heterocyclic Carbene) and Its Role in Alkene and Alkyne Reductions Using Formic Acid
journal, January 2013

  • Broggi, Julie; Jurčík, Václav; Songis, Olivier
  • Journal of the American Chemical Society, Vol. 135, Issue 12
  • DOI: 10.1021/ja311087c

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
journal, September 2011


Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions
journal, May 2013

  • Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa
  • Chemistry - A European Journal, Vol. 19, Issue 25
  • DOI: 10.1002/chem.201301383

A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides
journal, November 2010

  • Federsel, Christopher; Boddien, Albert; Jackstell, Ralf
  • Angewandte Chemie International Edition, Vol. 49, Issue 50
  • DOI: 10.1002/anie.201004263

Iron-Catalyzed Hydrogen Production from Formic Acid
journal, July 2010

  • Boddien, Albert; Loges, Björn; Gärtner, Felix
  • Journal of the American Chemical Society, Vol. 132, Issue 26
  • DOI: 10.1021/ja100925n

Hydrogen Storage in Formic Acid – Amine Adducts
journal, April 2011

  • Boddien, Albert; Gärtner, Felix; Mellmann, Dörthe
  • CHIMIA International Journal for Chemistry, Vol. 65, Issue 4
  • DOI: 10.2533/chimia.2011.214

Carbonyl abstraction reactions of Cp*Mo(PMe3)3H with CO2, (CH2O)n, HCO2H, and MeOH: the synthesis of Cp*Mo(PMe3)2(CO)H and the catalytic decarboxylation of formic acid
journal, January 2002


Cobalt Phthalocyanine – аn Effective Catalyst of Hydrogen Production from Formic Acid
journal, January 2009

  • Kudrik, Evgeny V.; Makarov, Sergei V.; Ageeva, Elena S.
  • Macroheterocycles, Vol. 2, Issue 1
  • DOI: 10.6060/mhc2009.1.69

Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H 2 and CO 2
journal, January 2014


Formic acid Dehydrogenation on Surfaces — a Review of Computational Aspect
journal, November 2013

  • Luo, Qiquan; Beller, Matthias; Jiao, Haijun
  • Journal of Theoretical and Computational Chemistry, Vol. 12, Issue 07
  • DOI: 10.1142/S0219633613300012

Hexakis(trimethylphosphine)molybdenum chemistry: dinitrogen, ethylene, butadiene, η-cyclopentadienyl, and related derivatives
journal, January 1985

  • Brookhart, Maurice; Cox, Kevin; Cloke, F. Geoffrey N.
  • J. Chem. Soc., Dalton Trans., Issue 3
  • DOI: 10.1039/DT9850000423

Trimethylphosphan- und Carbonyl-hydrid-Halbsandwichkomplexe des Chroms, Molybdäns und Wolframs: C5Hf5−, C5Me5− und ein isoelektronischer 6e−-Sauerstof-Tripodligand im Vergleich
journal, September 1987

  • Alt, Helmut G.; Engelhardt, Heidi E.; Kläui, Wolfgang
  • Journal of Organometallic Chemistry, Vol. 331, Issue 3
  • DOI: 10.1016/0022-328X(87)80004-9

Synthesis and Structure of CpMo(CO)(dppe)H and Its Oxidation by Ph 3 C +
journal, June 2006

  • Cheng, Tan-Yun; Szalda, David J.; Zhang, Jie
  • Inorganic Chemistry, Vol. 45, Issue 12
  • DOI: 10.1021/ic060111k

Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe3)2(CO)H and its role in proton transfer
journal, January 2010

  • Dub, Pavel A.; Filippov, Oleg A.; Belkova, Natalia V.
  • Dalton Transactions, Vol. 39, Issue 8
  • DOI: 10.1039/b916084a

Oxidation and Protonation of Transition Metal Hydrides:  Role of an Added Base as Proton Shuttle and Nature of Protonated Water in Acetonitrile
journal, January 1996

  • Quadrelli, E. Alessandra; Kraatz, Heinz-Bernhard; Poli, Rinaldo
  • Inorganic Chemistry, Vol. 35, Issue 18
  • DOI: 10.1021/ic960394o

Ionic Hydrogenations of Hindered Olefins at Low Temperature. Hydride Transfer Reactions of Transition Metal Hydrides
journal, September 1994

  • Bullock, R. Morris; Song, Jeong-Sup
  • Journal of the American Chemical Society, Vol. 116, Issue 19
  • DOI: 10.1021/ja00098a021

Single-Step Hydride Transfer from CpMo(CO) 2 (PPh 3 )H to Protonated Ketones
journal, January 1996

  • Smith, Kjell-Tore; Norton, Jack R.; Tilset, Mats
  • Organometallics, Vol. 15, Issue 21
  • DOI: 10.1021/om950984e

Metallorganische lewis-säuren
journal, March 1987

  • Appel, Mathilde; Schloter, Klaus; Heidrich, Jürgen
  • Journal of Organometallic Chemistry, Vol. 322, Issue 1
  • DOI: 10.1016/0022-328X(87)85026-X

Transition metal-catalyzed polymerization of 1,3,5-trioxane
journal, September 2003

  • Lindner, Ekkehard; Henes, Michael; Wielandt, Wolfram
  • Journal of Organometallic Chemistry, Vol. 681, Issue 1-2
  • DOI: 10.1016/S0022-328X(03)00527-8

Estimating the Acidity of Transition Metal Hydride and Dihydrogen Complexes by Adding Ligand Acidity Constants
journal, January 2014

  • Morris, Robert H.
  • Journal of the American Chemical Society, Vol. 136, Issue 5
  • DOI: 10.1021/ja410718r

Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 3. Thermodynamic acidity of common mononuclear carbonyl hydrides
journal, April 1986

  • Moore, Eric J.; Sullivan, Jeffrey M.; Norton, Jack R.
  • Journal of the American Chemical Society, Vol. 108, Issue 9
  • DOI: 10.1021/ja00269a022

Wide range of pKa values of coordinated dihydrogen. Synthesis and properties of some .eta.2-dihydrogen and dihydride complexes of ruthenium
journal, January 1991

  • Jia, Guochen; Morris, Robert H.
  • Journal of the American Chemical Society, Vol. 113, Issue 3
  • DOI: 10.1021/ja00003a022

Ionic Hydrogenation of Ketones with Molybdenum Pentabenzylcyclopentadienyl Hydride Catalysts
journal, September 2008

  • Namorado, Sónia; Antunes, Maria Augusta; Veiros, Luis F.
  • Organometallics, Vol. 27, Issue 18
  • DOI: 10.1021/om800379z

Catalytic Ionic Hydrogenations
journal, May 2004


Homogeneous Catalysis with Inexpensive Metals:  Ionic Hydrogenation of Ketones with Molybdenum and Tungsten Catalysts
journal, December 2000

  • Bullock, R. Morris; Voges, Mark H.
  • Journal of the American Chemical Society, Vol. 122, Issue 50
  • DOI: 10.1021/ja0010599

Molybdenum Carbonyl Complexes in the Solvent-Free Catalytic Hydrogenation of Ketones
journal, December 2005

  • Kimmich, Barbara F. M.; Fagan, Paul J.; Hauptman, Elisabeth
  • Organometallics, Vol. 24, Issue 25
  • DOI: 10.1021/om050564h

Hydride Transfer by Hydrido Transition-Metal Complexes. Ionic Hydrogenation of Aldehydes and Ketones, and Structural Characterization of an Alcohol Complex
journal, September 1992

  • Song, Jeong-Sup; Szalda, David J.; Bullock, R. Morris
  • Angewandte Chemie International Edition in English, Vol. 31, Issue 9
  • DOI: 10.1002/anie.199212331

Pentabenzylcyclopentadienyl molybdenum and tungsten hydrides: Syntheses, structures and electrochemistry of [MHCpBz(CO)2(L)] (L=CO, PMe3, PPh3)
journal, May 2010


Electrical conductance studies in anhydrous formic acid solutions
journal, November 1968

  • Wehman, Thomas C.; Popov, Alexander I.
  • The Journal of Physical Chemistry, Vol. 72, Issue 12
  • DOI: 10.1021/j100858a015

Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures
journal, January 1987

  • Rondinini, S.; Longhi, P.; Mussini, P. R.
  • Pure and Applied Chemistry, Vol. 59, Issue 12
  • DOI: 10.1351/pac198759121693

Carbon–Carbon Bond Formation in Glycolic Acid Generated Spontaneously from Dichloromethane in Hot Water
journal, March 2004

  • Wakai, Chihiro; Morooka, Saiko; Matubayasi, Nobuyuki
  • Chemistry Letters, Vol. 33, Issue 3
  • DOI: 10.1246/cl.2004.302

Hydrothermal Carbon−Carbon Bond Formation and Disproportionations of C1 Aldehydes:  Formaldehyde and Formic Acid
journal, July 2005

  • Morooka, Saiko; Wakai, Chihiro; Matubayasi, Nobuyuki
  • The Journal of Physical Chemistry A, Vol. 109, Issue 29
  • DOI: 10.1021/jp052153k

Kinetic Study on Disproportionations of C1 Aldehydes in Supercritical Water:  Methanol from Formaldehyde and Formic Acid
journal, April 2007

  • Morooka, Saiko; Matubayasi, Nobuyuki; Nakahara, Masaru
  • The Journal of Physical Chemistry A, Vol. 111, Issue 14
  • DOI: 10.1021/jp066785y

Hydride Transfer Reactions of Transition Metal Hydrides:  Kinetic Hydricity of Metal Carbonyl Hydrides
journal, December 1998

  • Cheng, Tan-Yun; Brunschwig, Bruce S.; Bullock, R. Morris
  • Journal of the American Chemical Society, Vol. 120, Issue 50
  • DOI: 10.1021/ja9820036

Towards a Comprehensive Hydride Donor Ability Scale
journal, November 2012

  • Horn, Markus; Schappele, Ludwig H.; Lang-Wittkowski, Gabriele
  • Chemistry - A European Journal, Vol. 19, Issue 1
  • DOI: 10.1002/chem.201202839

Hydricities of BzNADH, C 5 H 5 Mo(PMe 3 )(CO) 2 H, and C 5 Me 5 Mo(PMe 3 )(CO) 2 H in Acetonitrile
journal, March 2004

  • Ellis, William W.; Raebiger, James W.; Curtis, Calvin J.
  • Journal of the American Chemical Society, Vol. 126, Issue 9
  • DOI: 10.1021/ja038567d

Thermodynamic Hydride Donor Abilities of [HW(CO) 4 L] - Complexes (L = PPh 3 , P(OMe) 3 , CO) and Their Reactions with [C 5 Me 5 Re(PMe 3 )(NO)(CO)] +
journal, October 2003

  • Ellis, William W.; Ciancanelli, Rebecca; Miller, Susie M.
  • Journal of the American Chemical Society, Vol. 125, Issue 40
  • DOI: 10.1021/ja036524r

Recent topics of transfer hydrogenation
journal, May 2014


Asymmetric transfer hydrogenation: chiral ligands and applications
journal, January 2006

  • Gladiali, Serafino; Alberico, Elisabetta
  • Chem. Soc. Rev., Vol. 35, Issue 3
  • DOI: 10.1039/B513396C

Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes
journal, March 2010

  • Malacea, Raluca; Poli, Rinaldo; Manoury, Eric
  • Coordination Chemistry Reviews, Vol. 254, Issue 5-6
  • DOI: 10.1016/j.ccr.2009.09.033

Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes
journal, January 2009

  • Morris, Robert H.
  • Chemical Society Reviews, Vol. 38, Issue 8
  • DOI: 10.1039/b806837m

Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions
journal, January 2006

  • Samec, Joseph S. M.; Bäckvall, Jan-E.; Andersson, Pher G.
  • Chemical Society Reviews, Vol. 35, Issue 3
  • DOI: 10.1039/b515269k

Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes
journal, February 1997

  • Noyori, Ryoji; Hashiguchi, Shohei
  • Accounts of Chemical Research, Vol. 30, Issue 2
  • DOI: 10.1021/ar9502341

Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds
journal, April 1985

  • Johnstone, Robert A. W.; Wilby, Anna H.; Entwistle, Ian D.
  • Chemical Reviews, Vol. 85, Issue 2
  • DOI: 10.1021/cr00066a003

Advances in Catalyst Systems for the Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones
journal, January 2014


Hydrogen-Transfer Reduction of Ketones into Corresponding Alcohols Using Formic Acid as a Hydrogen Donor without a Metal Catalyst in High-Temperature Water
journal, July 2010

  • Shen, Zheng; Zhang, Yalei; Jin, Fangming
  • Industrial & Engineering Chemistry Research, Vol. 49, Issue 13
  • DOI: 10.1021/ie100598a

Practical Aspects and Mechanism of Asymmetric Hydrogenation with Chiral Half-Sandwich Complexes
journal, June 2013


Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts
journal, January 2010


The development of aqueous transfer hydrogenation catalysts
journal, January 2011

  • Robertson, Andrew; Matsumoto, Takahiro; Ogo, Seiji
  • Dalton Transactions, Vol. 40, Issue 40
  • DOI: 10.1039/c1dt10544b

Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using a Formic Acid−Triethylamine Mixture
journal, January 1996

  • Fujii, Akio; Hashiguchi, Shohei; Uematsu, Nobuyuki
  • Journal of the American Chemical Society, Vol. 118, Issue 10
  • DOI: 10.1021/ja954126l

Synthesis and Catalytic Activity of Water-Soluble Ruthenium(II) Complexes Bearing a Naphthyridine–Carboxylate Ligand
journal, May 2014

  • Huang, Chang-Yao; Kuan, Kai-Yuan; Liu, Yi-Hong
  • Organometallics, Vol. 33, Issue 11
  • DOI: 10.1021/om5003528

Selective Conversion of Levulinic and Formic Acids to γ-Valerolactone with the Shvo Catalyst
journal, December 2013

  • Fábos, Viktória; Mika, László T.; Horváth, István T.
  • Organometallics, Vol. 33, Issue 1
  • DOI: 10.1021/om400938h

Efficient Route to Hydroxymethylfurans from Sugars via Transfer Hydrogenation
journal, August 2010


An outstanding catalyst for asymmetric transfer hydrogenation in aqueous solution and formic acid/triethylamine
journal, January 2006

  • Matharu, Daljit S.; Morris, David J.; Clarkson, Guy J.
  • Chemical Communications, Issue 30
  • DOI: 10.1039/b606288a

Transfer hydrogenation of a variety of ketones catalyzed by rhodium complexes in aqueous solution and their application to asymmetric reduction using chiral Schiff base ligands
journal, March 2003

  • Himeda, Yuichiro; Onozawa-Komatsuzaki, Nobuko; Sugihara, Hideki
  • Journal of Molecular Catalysis A: Chemical, Vol. 195, Issue 1-2
  • DOI: 10.1016/S1381-1169(02)00576-9

Chemoselective Transfer Hydrogenation of α,β-Unsaturated Aldehydes to Allylic Alcohols Using Formic Acid Catalyzed by Polymer-Bound Rh Carbonyl Clusters
journal, April 1998

  • Mizugaki, Tomoo; Kanayama, Yoshinori; Ebitani, Kohki
  • The Journal of Organic Chemistry, Vol. 63, Issue 7
  • DOI: 10.1021/jo9719362

Ruthenium-catalyzed Reduction of Carbonyl Compounds Using Formic Acid
journal, August 1982

  • Watanabe, Yoshihisa; Ohta, Tetsuo; Tsuji, Yasushi
  • Bulletin of the Chemical Society of Japan, Vol. 55, Issue 8
  • DOI: 10.1246/bcsj.55.2441

pH-Dependent Selective Transfer Hydrogenation of α,β-Unsaturated Carbonyls in Aqueous Media Utilizing Half-Sandwich Ruthenium(II) Complexes
journal, January 2007

  • Mebi, Charles A.; Nair, Radhika P.; Frost, Brian J.
  • Organometallics, Vol. 26, Issue 2
  • DOI: 10.1021/om060892x

Water soluble ruthenium cyclopentadienyl and aminocyclopentadienyl PTA complexes as catalysts for selective hydrogenation of α,β-unsaturated substrates (PTA=1,3,5-triaza-7-phosphaadamantane)
journal, December 2004

  • Bolaño, Sandra; Gonsalvi, Luca; Zanobini, Fabrizio
  • Journal of Molecular Catalysis A: Chemical, Vol. 224, Issue 1-2
  • DOI: 10.1016/j.molcata.2004.06.030

Evidence for Direct Hydride Delivery from Formic Acid in Transfer Hydrogenation
journal, July 1999


Selective iron-catalyzed transfer hydrogenation of terminal alkynes
journal, January 2012

  • Wienhöfer, Gerrit; Westerhaus, Felix A.; Jagadeesh, Rajenahally V.
  • Chemical Communications, Vol. 48, Issue 40
  • DOI: 10.1039/c2cc31091k

General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base
journal, August 2011

  • Wienhöfer, Gerrit; Sorribes, Iván; Boddien, Albert
  • Journal of the American Chemical Society, Vol. 133, Issue 32
  • DOI: 10.1021/ja2061038

Alcohol Complexes of Tungsten Prepared by Ionic Hydrogenations of Ketones
journal, July 2001

  • Song, Jeong-Sup; Szalda, David J.; Bullock, R. Morris
  • Organometallics, Vol. 20, Issue 15
  • DOI: 10.1021/om010222l

Beyond Oil and Gas: The Methanol Economy
journal, April 2005


Isopropyl alcohol
journal, November 1995


    Works referencing / citing this record:

    Base‐Free Hydrogenation of Carbon Dioxide to Methyl Formate with a Molecular Ruthenium‐Phosphine Catalyst
    journal, March 2019

    • Westhues, Niklas; Belleflamme, Maurice; Klankermayer, Jürgen
    • ChemCatChem, Vol. 11, Issue 21
    • DOI: 10.1002/cctc.201900627

    Enhanced Hydrogen Generation from Formic Acid by Half-Sandwich Iridium(III) Complexes with Metal/NH Bifunctionality: A Pronounced Switch from Transfer Hydrogenation
    journal, August 2015

    • Matsunami, Asuka; Kayaki, Yoshihito; Ikariya, Takao
    • Chemistry - A European Journal, Vol. 21, Issue 39
    • DOI: 10.1002/chem.201502412

    Electronic effects on the catalytic disproportionation of formic acid to methanol by [Cp*Ir III (R-bpy)Cl]Cl complexes
    journal, January 2016

    • Sasayama, A. F.; Moore, C. E.; Kubiak, C. P.
    • Dalton Transactions, Vol. 45, Issue 6
    • DOI: 10.1039/c5dt04606h

    Carboxylation of terminal alkynes with CO 2 using novel silver N-heterocyclic carbene complexes
    journal, January 2016

    • Li, Shanshan; Sun, Jing; Zhang, Zhizhi
    • Dalton Trans., Vol. 45, Issue 26
    • DOI: 10.1039/c6dt01746k

    Metal-free disproportionation of formic acid mediated by organoboranes
    journal, January 2016

    • Chauvier, Clément; Thuéry, Pierre; Cantat, Thibault
    • Chemical Science, Vol. 7, Issue 9
    • DOI: 10.1039/c6sc01410k