skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class

Abstract

Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but also demonstrates the topological classification beyond the gapped topological insulators. Here, we identify a topological Weyl semimetal state in the transition metal monopnictide materials class. Our first-principles calculations on TaAs reveal its bulk Weyl fermion cones and surface Fermi arcs. Our results show that in the TaAs-type materials the Weyl semimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials.

Authors:
 [1];  [2];  [3];  [4]; ORCiD logo [5];  [6];  [3];  [7];  [8];  [9];  [10];  [11];  [5]; ORCiD logo [12]
  1. National Univ. of Singapore, Singapore (Mongolia). Centre for Advanced 2D Materials and Graphene Research Centre; National Univ. of Singapore, Singapore (Mongolia). Dept. of Physics
  2. Princeton Univ., NJ (United States). Dept. of Physics, Joseph Henry Laboratory; Princeton Univ., NJ (United States). Princeton Center for Complex Materials
  3. Princeton Univ., NJ (United States). Dept. of Physics, Joseph Henry Laboratory; Princeton Univ., NJ (United States). Princeton Center for Complex Materials
  4. National Univ. of Singapore, Singapore (Mongolia). Centre for Advanced 2D Materials and Graphene Research Centre; National Univ. of Singapore, Singapore (Mongolia). Dept. of Physics
  5. National Univ. of Singapore, Singapore (Mongolia). Centre for Advanced 2D Materials and Graphene Research Centre; National Univ. of Singapore, Singapore (Mongolia). Dept. of Physics
  6. National Univ. of Singapore, Singapore (Mongolia). Centre for Advanced 2D Materials and Graphene Research Centre; National Univ. of Singapore, Singapore (Mongolia). Dept. of Physics; Northeastern Univ., Boston, MA (United States). Dept. of Physics
  7. Princeton Univ., NJ (United States). Dept. of Physics, Joseph Henry Laboratory
  8. Princeton Univ., NJ (United States). Dept. of Physics, Joseph Henry Laboratory; Princeton Univ., NJ (United States). Princeton Center for Complex Materials; Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Condensed Matter and Magnet Science Group
  9. Peking Univ., Beijing (China). ICQM, School of Physics
  10. Peking Univ., Beijing (China). ICQM, School of Physics; Collaborative Innovation Center of Quantum Matter, Beijing (China)
  11. Northeastern Univ., Boston, MA (United States). Dept. of Physics
  12. Princeton Univ., NJ (United States). Dept. of Physics, Joseph Henry Laboratory; Princeton Univ., NJ (United States). Princeton Center for Complex Materials; Princeton Univ., NJ (United States). Princeton Center for Complex Materials
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Princeton Univ., NJ (United States); Northeastern Univ., Boston, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1623981
Grant/Contract Number:  
AC02-05CH11231; FG02-05ER46200; FG02-07ER46352
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
Science & Technology - Other Topics

Citation Formats

Huang, Shin-Ming, Xu, Su-Yang, Belopolski, Ilya, Lee, Chi-Cheng, Chang, Guoqing, Wang, BaoKai, Alidoust, Nasser, Bian, Guang, Neupane, Madhab, Zhang, Chenglong, Jia, Shuang, Bansil, Arun, Lin, Hsin, and Hasan, M. Zahid. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. United States: N. p., 2015. Web. doi:10.1038/ncomms8373.
Huang, Shin-Ming, Xu, Su-Yang, Belopolski, Ilya, Lee, Chi-Cheng, Chang, Guoqing, Wang, BaoKai, Alidoust, Nasser, Bian, Guang, Neupane, Madhab, Zhang, Chenglong, Jia, Shuang, Bansil, Arun, Lin, Hsin, & Hasan, M. Zahid. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. United States. doi:10.1038/ncomms8373.
Huang, Shin-Ming, Xu, Su-Yang, Belopolski, Ilya, Lee, Chi-Cheng, Chang, Guoqing, Wang, BaoKai, Alidoust, Nasser, Bian, Guang, Neupane, Madhab, Zhang, Chenglong, Jia, Shuang, Bansil, Arun, Lin, Hsin, and Hasan, M. Zahid. Fri . "A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class". United States. doi:10.1038/ncomms8373. https://www.osti.gov/servlets/purl/1623981.
@article{osti_1623981,
title = {A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class},
author = {Huang, Shin-Ming and Xu, Su-Yang and Belopolski, Ilya and Lee, Chi-Cheng and Chang, Guoqing and Wang, BaoKai and Alidoust, Nasser and Bian, Guang and Neupane, Madhab and Zhang, Chenglong and Jia, Shuang and Bansil, Arun and Lin, Hsin and Hasan, M. Zahid},
abstractNote = {Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but also demonstrates the topological classification beyond the gapped topological insulators. Here, we identify a topological Weyl semimetal state in the transition metal monopnictide materials class. Our first-principles calculations on TaAs reveal its bulk Weyl fermion cones and surface Fermi arcs. Our results show that in the TaAs-type materials the Weyl semimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials.},
doi = {10.1038/ncomms8373},
journal = {Nature Communications},
issn = {2041-1723},
number = 1,
volume = 6,
place = {United States},
year = {2015},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Elektron und Gravitation. I
journal, May 1929


Weyl electrons kiss
journal, May 2011


Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


New directions in the pursuit of Majorana fermions in solid state systems
journal, June 2012


The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Colloquium: Topological insulators
journal, November 2010


Topological insulators and superconductors
journal, October 2011


Topological electronic structure and Weyl semimetal in the TlBiSe 2 class of semiconductors
journal, September 2012


Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb)
journal, May 2012


Three-dimensional Dirac semimetal and quantum transport in Cd 3 As 2
journal, September 2013


Topological response in Weyl semimetals and the chiral anomaly
journal, September 2012


Chiral gauge field and axial anomaly in a Weyl semimetal
journal, June 2013


Recent developments in transport phenomena in Weyl semimetals
journal, November 2013


Friedel oscillations due to Fermi arcs in Weyl semimetals
journal, November 2012


Helical Fermi arcs and surface states in time-reversal invariant Weyl semimetals
journal, June 2013


Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals
journal, October 2014

  • Potter, Andrew C.; Kimchi, Itamar; Vishwanath, Ashvin
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6161

Weyl Semimetal in a Topological Insulator Multilayer
journal, September 2011


Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr 2 Se 4
journal, October 2011


Prediction of a Weyl semimetal in Hg 1 x y Cd x Mn y Te
journal, February 2014


Weyl semimetals from noncentrosymmetric topological insulators
journal, October 2014


Phase relationships and thermodynamics of refractory metal pnictides: The metal-rich tantalum arsenides
journal, May 1976


Structure and magnetic properties of the pyrochlore iridate Y 2 Ir 2 O 7
journal, June 2012


Magnetic order, spin dynamics and transport properties of the pyrochlore iridate Y2Ir2O7
journal, February 2014


Giant Rashba-type spin splitting in bulk BiTeI
journal, June 2011

  • Ishizaka, K.; Bahramy, M. S.; Murakawa, H.
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3051

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Variationally optimized atomic orbitals for large-scale electronic structures
journal, April 2003


Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials
journal, July 2001


Revisiting magnetic coupling in transition-metal-benzene complexes with maximally localized Wannier functions
journal, June 2009


    Works referencing / citing this record:

    Nonsaturating Magnetoresistance and Nontrivial Band Topology of Type‐II Weyl Semimetal NbIrTe 4
    journal, July 2019

    • Zhou, Wei; Li, Bin; Xu, Chun Qiang
    • Advanced Electronic Materials, Vol. 5, Issue 8
    • DOI: 10.1002/aelm.201900250

    Silicide Thermoelectrics: Materials for Energy Harvesting
    journal, June 2018


    Type-II Weyl semimetals
    journal, November 2015

    • Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun
    • Nature, Vol. 527, Issue 7579
    • DOI: 10.1038/nature15768

    A magnetic topological semimetal Sr1−yMn1−zSb2 (y, z < 0.1)
    journal, July 2017

    • Liu, J. Y.; Hu, J.; Zhang, Q.
    • Nature Materials, Vol. 16, Issue 9
    • DOI: 10.1038/nmat4953

    Anisotropic thermoelectric properties of Weyl semimetal NbX (X = P and As): a potential thermoelectric material
    journal, January 2019

    • Zhou, Yu; Zhao, Ying-Qin; Zeng, Zhao-Yi
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 27
    • DOI: 10.1039/c9cp02020a

    Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory
    journal, April 2018

    • Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik
    • Journal of Physics: Condensed Matter, Vol. 30, Issue 18
    • DOI: 10.1088/1361-648x/aab5e3

    Advances in synthetic gauge fields for light through dynamic modulation
    journal, April 2018


    Topological materials discovery by large-order symmetry indicators
    journal, March 2019