Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Seismic qualification of unanchored equipment

Conference ·
OSTI ID:162138

This paper describes procedures used to design and qualify unanchored equipment to survive Seismic events to the PC = 4 level in a moderate seismic area. The need for flexibility to move experimental equipment together with the requirements for remote handling in a highly-radioactive non-reactor nuclear facility precluded normal equipment anchorage. Instead equipment was designed to remain stable under anticipated DBE floor motions with sufficient margin to achieve the performance goal. The equipment was also designed to accommodate anticipated sliding motions with sufficient. The simplified design criteria used to achieve these goals were based on extensive time-history simulations of sliding, rocking, and overturning of generic equipment models. The entire process was subject to independent peer review and accepted in a Safety Evaluation Report. The process provides a model suitable for adaptation to similar applications and for assessment of the potential for seismic damage of existing, unanchored equipment In particular, the paper describes: (1) Two dimensional sliding studies of deformable equipment subject to 3-D floor excitation as the basis for simplified sliding radius and sliding velocity design criteria. (2) Two dimensional rocking and overturning simulations of rigid equipment used to establish design criteria for minimum base dimensions and equipment rigidity to prevent overturning. (3) Assumed mode rocking analyses of deformable equipment models used to establish uplift magnitudes and subsequent impacts during stable rocking motions. The model used for these dynamic impact studies is reported elsewhere.

Research Organization:
Argonne National Lab., IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
162138
Report Number(s):
ANL/RE/CP--87774; CONF-9511128--8; ON: DE96002519
Country of Publication:
United States
Language:
English