Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals

Journal Article · · Journal of the American Chemical Society
DOI:https://doi.org/10.1021/jacs.9b11637· OSTI ID:1617374
 [1];  [1];  [2];  [1];  [1];  [1];  [3];  [1];  [2];  [4];  [1];  [5];  [6];  [7];  [8];  [1];  [1];  [1];  [9];  [1] more »;  [3];  [9];  [10];  [11];  [12] « less
  1. Helmholtz-Zentrum Berlin (HZB), (Germany). German Research Centre for Materials and Energy
  2. National Research Council-Inst. of Molecular Science and Technologies (CNR-ISTM), Perugia (Italy). Computational Lab. for Hybrid/Organic Photovoltaics (CLHYO); Istituto Italiano di Tecnologia (IIT), Genova (Italy)
  3. Georgia Inst. of Technology, Atlanta, GA (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  5. Helmholtz-Zentrum Berlin (HZB), (Germany). German Research Centre for Materials and Energy; Soochow Univ., Suzhou (China). Jiangsu Key Lab. for Carbon-Based Functional Materials & Devices and Lab. of Advanced Optoelectronic Materials
  6. Soochow Univ., Suzhou (China). Jiangsu Key Lab. for Carbon-Based Functional Materials & Devices
  7. Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
  8. Helmholtz-Zentrum Berlin (HZB), (Germany). German Research Centre for Materials and Energy; Soochow Univ., Suzhou (China). Jiangsu Key Lab. for Carbon-Based Functional Materials & Devices
  9. Helmholtz-Zentrum Berlin (HZB), (Germany). German Research Centre for Materials and Energy; Technical Univ. of Berlin (Germany)
  10. National Research Council-Inst. of Molecular Science and Technologies (CNR-ISTM), Perugia (Italy). Computational Lab. for Hybrid/Organic Photovoltaics (CLHYO); Istituto Italiano di Tecnologia (IIT), Genova (Italy); Univ. of Perugia (Italy)
  11. Helmholtz-Zentrum Berlin (HZB), (Germany). German Research Centre for Materials and Energy; Univ. of Erlangen-Nuremberg (Germany); Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Berlin (Germany)
  12. Helmholtz-Zentrum Berlin (HZB), (Germany). German Research Centre for Materials and Energy; Univ. of Naples Federico II (Italy)
Halide perovskites are a potential candidate for the next generation of photovoltaics. Chemical doping of halide perovskites is an established strategy to prepare the highest efficiency and most stable perovskite-based solar cells. Here, we unveil the doping mechanism of halide perovskites using a series of alkaline earth metals. We find that low doping levels enable the incorporation of the dopant within the perovskite lattice, whereas high doping concentrations induce surface segregation. The threshold from low to high doping regime correlates to the size of the doping element. We show that the low doping regime results in a more n-type material, while the high doping regime induces a less n-type doping character. Our work offers a comprehensive picture of the unique doping mechanism of halide perovskites, which differs from classical semiconductors. We proved the effectiveness of the low doping regime for the first time, demonstrating highly efficient methylammonium lead iodide based solar cells in both n-i-p and p-i-n architectures.
Research Organization:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Organization:
European Union - Horizon 2020 Research and Innovation Programme; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Grant/Contract Number:
AC02-06CH11357
OSTI ID:
1617374
Journal Information:
Journal of the American Chemical Society, Journal Name: Journal of the American Chemical Society Journal Issue: 5 Vol. 142; ISSN 0002-7863
Publisher:
American Chemical Society (ACS)Copyright Statement
Country of Publication:
United States
Language:
English

Similar Records

Local halide heterogeneity drives surface wrinkling in mixed-halide wide-bandgap perovskites
Journal Article · Mon Feb 24 19:00:00 EST 2025 · Nature Communications · OSTI ID:2538435