Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

An estimate for the residual term in asymptotic formulas for the spectral function of the Sturm-Liouville operator

Journal Article · · Journal of Mathematical Sciences
DOI:https://doi.org/10.1007/BF02364902· OSTI ID:161614
We consider the Sturm-Liouville boundary-value problem -y{double_prime} + q(x) y = {mu} y; y{prime} (0) = 0; 0 {le} x < {infinity}, where the potential q(x) is real and locally summable, and we use c({lambda}, x) to denote the solution to the equation -y{double_prime} + q(x)y = {lambda} {sup 2}y with initial data c({lambda}, 0) = 1, c{prime} ({lambda}, 0) = 1, c{prime}({lambda}, 0) = 0. According to Weyl`s theorem, there exists at least one nondecreasing spectral function {rho}({mu}) (-{infinity} < {mu} < {infinity}) for this problem that generates the expansion formulas.
OSTI ID:
161614
Journal Information:
Journal of Mathematical Sciences, Journal Name: Journal of Mathematical Sciences Journal Issue: 4 Vol. 76; ISSN 1072-1964; ISSN JMTSEW
Country of Publication:
United States
Language:
English

Similar Records

Cesaro-One Summability and Uniform Convergence of Solutions of a Sturm-Liouville System
Journal Article · Mon Jan 25 23:00:00 EST 1999 · Real Analysis Exchange · OSTI ID:3223

An asymptotic formula for Weyl solutions of the dirac equations
Journal Article · Wed Oct 25 00:00:00 EDT 1995 · Journal of Mathematical Sciences · OSTI ID:244111

Differential equations whose solution of the Cauchy problem displays nonclassical behaviour with respect to the parameter {lambda}
Journal Article · Sat Oct 31 00:00:00 EDT 2009 · Sbornik. Mathematics · OSTI ID:21301426