skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The mass transfer dynamics of gaseous methyl-iodide adsorption by silver-exchanged sodium mordenite

Technical Report ·
DOI:https://doi.org/10.2172/161458· OSTI ID:161458

The adsorption of methyl iodide onto hydrogen-reduced silver-exchange mordenite was studied. The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH{sub 3}I uptake behavior onto the Ag-Z. Linear and multidimensional regression techniques were utilized in the estimation of the diffusion constants and other model parameters which then permitted the selection of an appropriate mass transfer model. To date, only bulk loading data exist for the adsorption of CH{sub 3}I onto Ag-Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process. It can be concluded from the analysis of the experimental data obtained by the single-pellet type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH{sub 3}I onto Ag-Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 {times} 10{sup {minus}14} cm{sup 2}/s. The system was also shown to be isothermal under all conditions of this study. Two other conclusions were also obtained. First, the gas film resistance to mass transfer for the 1/16 and 1/8-in.-diam Ag-Z pellets can be ignored under the conditions used in this study. Finally, it was shown that by decreasing the water vapor content of the feed gas, the chemical reaction rate appeared to become the initial rate-limiting factor for the mass transfer. 75 refs.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
161458
Report Number(s):
ORNL-6853; ON: DE96003137; TRN: AHC29601%%13
Resource Relation:
Other Information: DN: Thesis submitted to Univ. of Tennessee, Knoxville, TN (US); TH: Thesis (Ph.D.); PBD: Dec 1994
Country of Publication:
United States
Language:
English