Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Theory of the tertiary instability and the Dimits shift from reduced drift-wave models

Dataset ·
DOI:https://doi.org/10.11578/1608302· OSTI ID:1608302

Tertiary modes in electrostatic drift-wave turbulence are localized near extrema of the zonal velocity $U(x)$ with respect to the radial coordinate $$x$$. We argue that these modes can be described as quantum harmonic oscillators with complex frequencies, so their spectrum can be readily calculated. The corresponding growth rate $$\gamma_{\rm TI}$$ is derived within the modified Hasegawa--Wakatani model. We show that $$\gamma_{\rm TI}$$ equals the primary-instability growth rate plus a term that depends on the local $U''$; hence, the instability threshold is shifted compared to that in homogeneous turbulence. This provides a generic explanation of the well-known yet elusive Dimits shift, which we find explicitly in the Terry--Horton limit. Linearly unstable tertiary modes either saturate due to the evolution of the zonal density or generate radially propagating structures when the shear $|U'|$ is sufficiently weakened by viscosity. The Dimits regime ends when such structures are generated continuously.

Research Organization:
Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
DOE Contract Number:
AC02-09CH11466
OSTI ID:
1608302
Country of Publication:
United States
Language:
English

Similar Records

Theory of the Tertiary Instability and the Dimits Shift from Reduced Drift-Wave Models
Journal Article · Mon Feb 03 23:00:00 EST 2020 · Physical Review Letters · OSTI ID:1616941

Theory of the tertiary instability and the Dimits shift within a scalar model
Dataset · Mon Jun 29 00:00:00 EDT 2020 · OSTI ID:1661169

Theory of the tertiary instability and the Dimits shift within a scalar model
Journal Article · Thu Aug 20 00:00:00 EDT 2020 · Journal of Plasma Physics · OSTI ID:1668041