Automating Anharmonic Lattice Thermal Conductivity Calculations using Compressed Sensing Lattice Dynamics [Poster]
Conference
·
OSTI ID:1605247
- Cornell Univ., Ithaca, NY (United States). Dept. of Materials Science and Engineering
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technology Area
Engineering heat transfer is critical for applications in heat exchangers, semiconductor devices, thermoelectrics and more. This demand motivates a high-throughput computational methodology for systematically designing materials with improved thermal properties. One emerging method which can rapidly and explicitly consider phonon-phonon interactions even for highly anharmonic materials is Compressive Sensing Lattice Dynamics (CSLD). In fact, CSLD accurately predicts 2nd (harmonic) and 3rd+ order (anharmonic) interatomic force constants (IFCs) with orders of magnitude fewer Density Functional Theory (DFT) calculations than conventional methods. However, doing CSLD can be an exhaustive, many-step process requiring an intimate knowledge of its sensitivity to parameters. Consequently, this work implements an automatic CSLD workflow capable of obtaining the thermal conductivity of potentially thousands of materials, benchmarks the stability of the workflow against materials with a range of anharmonicity, and begins constructing a dataset of thermal conductivity values and phonon dispersion curves to be stored in the Materials Project for public use.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22), Materials Sciences & Engineering Division (SC- 22.2)
- DOE Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1605247
- Country of Publication:
- United States
- Language:
- English
Similar Records
A high-throughput framework for lattice dynamics
Journal Article
·
Wed Nov 13 19:00:00 EST 2024
· npj Computational Materials
·
OSTI ID:2477474