Hydrogen adsorption on and solubility in graphites
The experimental data on sorption and solubility of hydrogen isotopes in graphite in a wide ranges of temperature and pressure are reviewed. The Langmuir type adsorption is proposed for the hydrogen -- graphites interaction with taking into account dangling sp{sup 2}{minus}bonds relaxation. Three kinds of traps are proposed: Carbon interstitial loops with the adsorption enthalpy of {minus}4.4 eV/H{sub 2} (Traps l); carbon network edge atoms with the adsorption enthalpy of {minus}2.3 eV/H{sub 2} (Traps 2): Basal planes adsorption sites with enthalpy of +2.43 eV/H{sub 2} (Traps 3). The sorption capacity of every kind of graphite could be described with its own unique set of traps. The number of potential sites for the ``true solubility`` (Traps 3) we assume as 1E+6 appm, or HC=l, but endothermic character of this solubility leads to negligible amount of inventory in comparison with Traps 1 and Traps 2. The irradiation with neutrons or carbon atoms increases the number of Traps 1 and Traps 2. At damage level of {approximately}1 dpa under room temperature irradiation the number of these traps was increased up to 1500 and 5000 appm respectively. Traps 1 and Traps 2 are stable under high temperature annealing.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 158463
- Report Number(s):
- SAND--95-2484C; CONF-9509258--1; ON: DE96002737
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effects of neutron irradiation and hydrogen on ductile-brittle transition temperatures of V-Cr-Ti alloys
Amorphization of graphite under ion or electron irradiation