skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Is Radioactive Tank Waste a Bingham Fluid?

Conference ·

Slurries and sludges across the United States Department of Energy (DOE) complex rank among the most rheologically interesting. Their composition is heterogeneous, spanning a very broad range of particle sizes, densities, and interparticle forces. All exhibit shear thinning, some have yield stresses, and many are thixotropic. Despite the variety, these complex fluids are often represented using the historic Bingham fluid model, which fits higher shear rate data to a simple straight line. The intercept provides a yield stress, which has been a key design parameter in construction of large-scale waste processing facilities. However, many radioactive wastes are simply not Bingham fluids, which extrapolate but poorly across low to intermediate shear rates that are characteristic of typical processing conditions. Indeed, processing shear rates as high as 200 1/s, which has been a typical minimum shear rate used in fitting, are seldom encountered in nuclear waste processing. Therefore, more realistic rheological models are necessary to accurately predict waste processing performance. PNNL recently re-evaluated the rheology of reconstituted Hanford REDOX sludge waste against a wide variety of rheological models including the Bingham, Cross, Cross with yield stress, Carreau, biviscous, Herschel-Bulkley (which includes a power law dependence), Casson, and Gay models. They found that all of the models provided a closer fit than the Bingham model and that the biviscous model and Cross with yield stress model were convincing. However, reconstituted Hanford REDOX sludge waste is but one type of DOE waste and a direct contrast and comparison of these three models against undiluted, unmixed tank waste (actual not simulant) has not been performed previously. Therefore, the purpose of this paper is to evaluate the rheology of actual tank waste with these more accurate rheological models. In this paper, we evaluate select rheological data for slurry samples from Hanford’s AZ-101, AZ-102, and SY-101 waste tanks. In each of these cases, we find that Cross’ model with yield stress and the biviscous model significantly outperform the Bingham fluid model. Furthermore, the AZ-101 data also shows that the shear stress peak that startup significantly exceeds the Bingham yield stress, which is commonly observed in the incipient moments of rheological measurements on simulants. In contrast, Cross’ model may empirically accommodate an initial spike in shear stress at modest shear rates. These are important observations because computational and analytical fluid dynamics simulations rely on rheological constitutive models for accurately and conservatively predict waste processing performance. These findings suggest the need for better rheological modeling of and validation against radioactive waste.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1580520
Report Number(s):
PNNL-SA-142356
Resource Relation:
Conference: Proceedings of the ASME-JSME-KSME 2019 Joint Fluids Engineering Conference, AJKFLUIDS2019, July 28-August 1, 2019, San Francisco, CA
Country of Publication:
United States
Language:
English

Similar Records

Implications of Non-Bingham Rheology
Conference · Tue Jan 21 00:00:00 EST 2020 · OSTI ID:1580520

Slurry rheology of Hanford sludge
Journal Article · Wed May 01 00:00:00 EDT 2019 · Chemical Engineering Science · OSTI ID:1580520

Review Of Rheology Models For Hanford Waste Blending
Technical Report · Thu Sep 26 00:00:00 EDT 2013 · OSTI ID:1580520

Related Subjects